Iform = 2

ブロックフォーマットキーワード この境界材料を使用すると、グローバル材料状態を計算するためにも使用される副材料状態(密度、エネルギー、および体積比率)を適用できます。副材料EOSパラメータは、(ドメインの)隣接要素のパラメータで構成される必要があります。


law51_iform2
図 1.

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW51/mat_ID/unit_ID
mat_title
空白のフォーマット
Iform                  
#グローバルパラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Scaletime PEXT   VE L in   fct_I D VEL
#材料1パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 1 ρ 0 mat _ 1 E 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 1 fct_ID ρ 1 fct_I D E1  
C 1 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIXaaaaaaa@4156@ C 2 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIXaaaaaaa@4156@ C 3 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIXaaaaaaa@4156@ C 4 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIXaaaaaaa@4156@ C 5 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIXaaaaaaa@4156@
Δ P min mat _ 1 C 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIXaaaaaaa@4156@          
#材料2パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 2 ρ 0 mat _ 2 E 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 2 fct_ID ρ 2 fct_IDE2  
C 1 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 2 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 3 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 4 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 5 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
Δ P min mat _ 2 C 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#材料3パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 3 ρ 0 mat _ 3 E 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 3 fct_ID ρ 3 fct_IDE3  
C 1 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 2 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 3 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 4 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 5 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
Δ P min mat _ 3 C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
Iform 定式化フラグ

(整数)

=2: 強制状態

 
Scaletime 入力の関数の横軸のスケールファクタ

デフォルト = 1(実数)

 
VE L in 流入速度のスケールファクタ 5

(実数)

[ m s ]
fct_IDVEL (オプション)右記の速度関数の識別子; f V E L ( t ) 5

= 0: f ρi (t)

> 0: v ( t ) = V E L i n f V E L ( t )

(整数)
 
α 0 mat _ i 初期強制体積比率 2

(実数)

 
ρ 0 mat _ i 初期強制密度

(実数)

[ kg m 3 ]
E 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 単位体積あたりの初期強制エネルギー

(実数)

[ J m 3 ]
fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ i (オプション)右記の体積比率スケーリング関数の識別子; f α i ( t ) 3

= 0: α m a t _ i ( t ) = α 0 m a t _ i

> 0: α mat_i ( t )= α 0 mat_i f α i ( t )

(整数)

 
fct_ID ρ i (オプション)右記の密度スケーリング関数の識別子; f ρ i ( t ) 3

= 0: ρ m a t _ i ( t ) = ρ 0 m a t _ i

> 0: ρ mat_i ( t )= ρ 0 mat_i f ρ i ( t )

(整数)

 
fct_IDEi (オプション)右記の密度エネルギースケーリング関数の識別子; f E i ( t ) 3

= 0: E mat i ( t ) = E 0 mat _ i

> 0: E mat_i ( t )= E 0 mat_i f E i ( t )

(整数)

 
C 1 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ 多項式EOSの係数

(実数)

[ Pa ]
C 2 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ 多項式EOSの係数

(実数)

[ Pa ]
C 3 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ 多項式EOSの係数

(実数)

[ Pa ]
C 4 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ 多項式EOSの係数

(実数)

 
C 5 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ 多項式EOSの係数

(実数)

 
Δ P min mat _ i カットオフ圧力 4

デフォルト = -10-30(実数)

[ Pa ]
C 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ 多項式EOSの係数

(実数)

[ Pa ]

コメント

  1. この定式化は、ユーザーデータからの副材料状態を適用します。
    体積比率: (1)
    α m a t _ i ( t )
    密度: (2)
    ρ m a t _ i ( t )
    密度エネルギー: (3)
    E m a t _ i ( t )
    これを使用して、特定の多項式EOSから圧力を計算できます:(4)
    Δ P ( t ) = min { Δ P min , C 0 + C 1 μ + C 2 ' μ 2 + C 3 ' μ 3 + ( C 4 + C 5 μ ) E ( t ) }

    ここで、 P = Δ P + P E X T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0JaaeiLdiaadcfacqGHRaWkcaWGqbWaaSbaaSqaaiaadweacaWG ybGaamivaaqabaaaaa@3E8B@ かつ μ ( t ) = ρ ( t ) ρ 0 = 1 , E ( t ) = E int ( t ) / V 0 , C 2 ' = C 2 δ μ 0 , and C 3 ' = C 3 δ μ 0 。これは、EOSが膨張に対して線形であり、圧縮に対して3次式であることを意味します。

    また、グローバル材料状態は以下によって求められます:
    圧力
    Δ P = i α m a t _ i ( t ) Δ P m a t _ i
    密度
    ρ = i α m a t _ i ( t ) ρ m a t _ i
    エネルギー
    E i n t V = i α m a t _ i ( t ) E m a t _ i
  2. 体積比率によって、要素体積を3つの異なる材料で分け合うことができます。

    材料ごとに、 α 0 mat _ i を0と1の間に定義する必要があります。

    初期体積比率の合計 i = 1 3 α 0 mat _ i は1に等しい必要があります。

    体積の自動初期比率については、/INIVOLをご参照ください。

  3. 関数が定義されていない場合は、関連する量が一定になり、初期値に設定されます。ただし、入力量は、指定された関数識別子を使用して時間依存関数として定義できます。横軸関数は、 f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaabm aabaGaamiDaaGaayjkaiaawMcaaaaa@3965@ ではなく f ( S c a l e t i m e , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaabm aabaGaam4uaiaadogacaWGHbGaamiBaiaadwgadaWgaaWcbaGaamiD aiaadMgacaWGTbGaamyzaaqabaGccaGGSaGaamiDaaGaayjkaiaawM caaaaa@428F@ の使用につながるFscaletパラメータを使用してスケーリングすることもできます。
  4. Δ P min mat _ i フラグは、計算される圧力の最小値です。

    P = Δ P + P E X T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0JaaeiLdiaadcfacqGHRaWkcaWGqbWaaSbaaSqaaiaadweacaWG ybGaamivaaqabaaaaa@3E8B@ のため、 P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ の定義は Δ P = P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc facqGH9aqpcaWGqbaaaa@39C1@ および Δ P min = P min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc fadaWgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabg2da9iaadcfa daWgaaWcbaGaciyBaiaacMgacaGGUbaabeaaaaa@3FC7@ を意味します。

    液体材料圧力を正のままにして、引張り強度を避ける必要があります。これにより、

    P min = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0JaaGimaaaa@3B94@ または Δ P min = P E X T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGuoGaam iuamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0JaeyOe I0IaamiuamaaBaaaleaacaWGfbGaamiwaiaadsfaaeqaaaaa@40C9@

    ソリッド材料については、 Δ P min mat _ i = 1030 のデフォルト値が適切です。

  5. 速度が定義されていない場合、ユーザーは/IMPVELを節点と用いて定義する必要があります。もしくは、法線速度を入力します。法線速度は、各サブ材料に使用される同じ速度でグローバル材料に適用されます。停滞点における状態のみが既知の場合、代わりに、/MAT/LAW51Iform=4,5を使用します。