/FAIL/SAHRAEI

ブロックフォーマットキーワード この直交異方性ひずみベースの破壊モデルを使用して、バッテリーセル内の破壊と短絡を予測できます。これは、ソリッド要素でのみ使用できます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/SAHRAEI/mat_ID/unit_ID
カード1 - 損傷累積パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Fct_ratio NUM DENOM ORDIN VOL_STRAIN   Fct_IDel El_ref
カード2 - 2軸引張破壊ひずみとひずみ速度依存性
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
COMP_DIR IDEL MAX_COMP_STRAIN RATIO        
オプションの行
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位の識別子。

(整数、最大10桁)

 
Fct_ratio ひずみ速度関数識別子。

(整数)

 
NUM 分子ひずみのフラグ。
= 1
X軸に沿ったひずみ。
= 2
Y軸に沿ったひずみ。
= 3
Z軸に沿ったひずみ。
= 4
第1主ひずみ。
= 5
第2主ひずみ。
= 6
第3主ひずみ。

(整数)

 
DENOM 分母ひずみのフラグ。
= 1
X-Z平面に沿った相当ひずみ。
= 2
X-Y平面での相当ひずみ。
= 3
Y-Z平面での相当ひずみ。
= 4
第1主ひずみ。
= 5
第2主ひずみ。
= 6
第3主ひずみ。

(整数)

 
ORDIN 破壊時の最大ひずみのフラグ。
= 1
max(eps_xx, eps_yy, eps_zz)
= 2
eps_xx
= 3
eps_yy
= 4
eps_zz
=5
第1主ひずみ。
= 6
x-z平面での相当ひずみ。
= 7
x-y平面での相当ひずみ。
= 8
y-z平面での相当ひずみ。

(整数)

 
VOL_STRAIN 損傷を引き起こす体積ひずみ。

(実数)

 
Fct_IDel 要素サイズ正則化関数の識別子。

(整数)

 
El_ref 参照要素サイズ。

(実数)

[ m ]
COMP_DIR 圧縮破壊の方向成分。

(整数)

 
IDEL 圧縮での要素削除をアクティブ化するフラグ。
= 0(デフォルト)
圧縮時に要素は削除されません。
= 1
圧縮時に要素は削除されます。

(整数)

 
MAX_COMP_STRAIN 圧縮での要素破壊の最大ひずみ値。

(実数)

 
RATIO 圧縮での破壊のひずみ速度。

(実数)

 
fail_ID (オプション)破壊基準識別子。

(整数、最大10桁)

 

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
#              MUNIT               LUNIT               TUNIT
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  1. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW28/1
MAIN_1
#        Init. dens.          Ref. dens.
              2.5E-6                   0
#               E_11                E_22                E_33
                  10                   8                   8
#               G_12                G_23                G_31
                   5                   5                   5
#      Y11       Y22       Y33    Iflag1            Fscale11            Fscale22            Fscale33
        10        11        11         1                   0                   0                   0
#         Eps_max_11          Eps_max_22          Eps_max_33
                   0                   0                   0
#      Y12       Y23       Y31    Iflag2            Fscale12            Fscale23            Fscale31
        12        12        12         1                   0                   0                   0
#         Eps_max_12          Eps_max_23          Eps_max_31
                   0                   0                   0
/FAIL/SAHRAEI/1
#Fct_ratio       NUM     DENOM     ORDIN          VOL_STRAIN            Fct_IDEL              EL_REF
      3000         6         4         1                  .5                3001                   5                 
# COMP_DIR     MAX_COMP_STRAIN               RATIO
         0                   1                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10
Load 1st direction
                  -1                   5
                   0                  .1
                   1                  .1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/11
Load 2nd and 3rd direction
                  -1                   4
                   0                 .08
                   1                 .08
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/12
Shear
                  -1                 .05
                   0                 .05
                   1                 .05
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/3000
fail strain as ratio of E33/E11 vs. failure strain
#                  X                   Y
                   0         0.335081967
         0.141129032         0.330491803
         0.181451613         0.312131148
                0.27         0.271967213
         0.403225807         0.222622951
         0.483870968         0.203114754
         0.705645161         0.149180328
         0.826612903         0.110163934
         1.008064516         0.082622951
         1.411290323         0.059672131
         1.975806452         0.055081967
         2.661290323         0.061967213
         3.286290323         0.063114754
         4.032258065         0.064262295
         4.677419355         0.064262295
         5.705645161         0.061967213
         6.693548387         0.061967213
         7.540322581         0.050491803
                  9.         0.032131148
                 10.         0.032131148
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/3001
fail strain as ratio of E33/E11 vs. failure strain
#                  X                   Y
                   0                   1
                   1                   1
                   5                  .5
                  10                  .5
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. SAHRAEI破壊基準では、ひずみ速度に応じた破壊時のひずみの進展が考慮されます。このひずみ速度は、次のように分子(NUM)と分母(DENOM)によってユーザー定義されます:(1)
    ε MAX =f( ε num ε denom ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad2eacaWGbbGaamiwaaqabaGccqGH9aqpcaWGMbWaaeWa aeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGUbGaamyDaiaad2gaae qaaaGcbaGaeqyTdu2aaSbaaSqaaiaadsgacaWGLbGaamOBaiaad+ga caWGTbaabeaaaaaakiaawIcacaGLPaaaaaa@4918@
  2. 分子 ε num MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad6gacaWG1bGaamyBaaqabaaaaa@3AA9@ として使用できるひずみは、次のいずれかです:
    • X軸に沿ったひずみ ε x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaaaa@38C7@
    • Y軸に沿ったひずみ ε y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaaaa@38C7@
    • Z軸に沿ったひずみ ε z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaaaa@38C7@
    • 第1主ひずみ ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
    • 第2主ひずみ ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
    • 第3主ひずみ ε 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
  3. 分母 ε denom MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadsgacaWGLbGaamOBaiaad+gacaWGTbaabeaaaaa@3C76@ として使用できるひずみは、次のいずれかです:
    • 次のように定義されたX-Z平面での相当ひずみ:(2)
      ε eq XZ = ε x + ε z 2 + ( ε x ε z 2 ) 2 + ε xz 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgacaWGXbaabaGaamiwaiabgkHiTiaadQfaaaGccqGH 9aqpdaWcaaqaaiabew7aLnaaBaaaleaacaWG4baabeaakiabgUcaRi abew7aLnaaBaaaleaacaWG6baabeaaaOqaaiaaikdaaaGaey4kaSYa aOaaaeaadaqadaqaamaalaaabaGaeqyTdu2aaSbaaSqaaiaadIhaae qaaOGaeyOeI0IaeqyTdu2aaSbaaSqaaiaadQhaaeqaaaGcbaGaaGOm aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq aH1oqzdaqhaaWcbaGaamiEaiaadQhaaeaacaaIYaaaaaqabaaaaa@5513@
    • 次のように定義されたX-Y平面での相当ひずみ:(3)
      ε eq XY = ε x + ε y 2 + ( ε x ε y 2 ) 2 + ε xy 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgacaWGXbaabaGaamiwaiabgkHiTiaadMfaaaGccqGH 9aqpdaWcaaqaaiabew7aLnaaBaaaleaacaWG4baabeaakiabgUcaRi abew7aLnaaBaaaleaacaWG5baabeaaaOqaaiaaikdaaaGaey4kaSYa aOaaaeaadaqadaqaamaalaaabaGaeqyTdu2aaSbaaSqaaiaadIhaae qaaOGaeyOeI0IaeqyTdu2aaSbaaSqaaiaadMhaaeqaaaGcbaGaaGOm aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq aH1oqzdaqhaaWcbaGaamiEaiaadMhaaeaacaaIYaaaaaqabaaaaa@550F@
    • 次のように定義されたY-Z平面での相当ひずみ:(4)
      ε eq YZ = ε y + ε z 2 + ( ε y ε z 2 ) 2 + ε yz 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgacaWGXbaabaGaamywaiabgkHiTiaadQfaaaGccqGH 9aqpdaWcaaqaaiabew7aLnaaBaaaleaacaWG5baabeaakiabgUcaRi abew7aLnaaBaaaleaacaWG6baabeaaaOqaaiaaikdaaaGaey4kaSYa aOaaaeaadaqadaqaamaalaaabaGaeqyTdu2aaSbaaSqaaiaadMhaae qaaOGaeyOeI0IaeqyTdu2aaSbaaSqaaiaadQhaaeqaaaGcbaGaaGOm aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq aH1oqzdaqhaaWcbaGaamyEaiaadQhaaeaacaaIYaaaaaqabaaaaa@5517@
    • 第1主ひずみ ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
    • 第2主ひずみ ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
    • 第3主ひずみ ε 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
  4. 最大値 ε MAX MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad2eacaWGbbGaamiwaaqabaaaaa@3A3F@ のひずみ計算は、次のいずれかです:
    • 法線ひずみの最大値 max( ε x , ε y , ε z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamiEaaqabaGccaGG SaGaeqyTdu2aaSbaaSqaaiaadMhaaeqaaOGaaiilaiabew7aLnaaBa aaleaacaWG6baabeaaaOGaayjkaiaawMcaaaaa@4445@
    • X軸に沿ったひずみ ε x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaaaa@38C7@
    • Y軸に沿ったひずみ ε y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaaaa@38C7@
    • Z軸に沿ったひずみ ε z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaaaa@38C7@
    • 第1主ひずみ ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@
    • X-Z平面での相当ひずみ ε eq XZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgacaWGXbaabaGaamiwaiabgkHiTiaadQfaaaaaaa@3C54@
    • X-Y平面での相当ひずみ ε eq XY MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgacaWGXbaabaGaamiwaiabgkHiTiaadMfaaaaaaa@3C53@
    • Y-Z平面での相当ひずみ ε eq YZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgacaWGXbaabaGaamywaiabgkHiTiaadQfaaaaaaa@3C55@
  5. 進展 ε MAX =f( ε num ε denom ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad2eacaWGbbGaamiwaaqabaGccqGH9aqpcaWGMbWaaeWa aeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGUbGaamyDaiaad2gaae qaaaGcbaGaeqyTdu2aaSbaaSqaaiaadsgacaWGLbGaamOBaiaad+ga caWGTbaabeaaaaaakiaawIcacaGLPaaaaaa@4918@ は、表形式関数IDFct_ratioによって与えられます。以下に推奨形状の例を示します:


    図 1.
  6. 体積ひずみの絶対値がユーザーが定義した限界値より大きくなると、損傷変数の計算が開始されます。損傷の進展は次のとおりです:(5)
    D = ε O R D I N ε M A X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maalaaabaGaeqyTdu2aaSbaaSqaaiaad+eacaWGsbGaamiraiaa dMeacaWGobaabeaaaOqaaiabew7aLnaaBaaaleaacaWGnbGaamyqai aadIfaaeqaaaaaaaa@4210@

    ここで、 ε O R D I N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad+eacaWGsbGaamiraiaadMeacaWGobaabeaaaaa@3BDF@ ε M A X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad2eacaWGbbGaamiwaaqabaaaaa@3A3F@ と同じ方法で計算されます。

  7. 圧縮時の破壊は、COMP_DIRRATIOMAX_COMP_STRAIN ε M A X _ C O M P < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad2eacaWGbbGaamiwaiaac+facaWGdbGaam4taiaad2ea caWGqbaabeaakiabgYda8iaaicdaaaa@402D@ と表わされる)を使用して定義することもできます。
    • COMP_DIR = 1の場合は、次のときに破壊に達します:

      ε y < ε M A X _ C O M P or ε z < ε M A X _ C O M P × r a t i o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeWaaa qaaiabew7aLnaaBaaaleaacaWG5baabeaakiabgYda8iabew7aLnaa BaaaleaacaWGnbGaamyqaiaadIfacaGGFbGaam4qaiaad+eacaWGnb GaamiuaaqabaaakeaacaqGVbGaaeOCaaqaaiabew7aLnaaBaaaleaa caWG6baabeaakiabgYda8iabew7aLnaaBaaaleaacaWGnbGaamyqai aadIfacaGGFbGaam4qaiaad+eacaWGnbGaamiuaaqabaGccqGHxdaT caWGYbGaamyyaiaadshacaWGPbGaam4Baaaaaaa@576B@

    • COMP_DIR = 2の場合は、次のときに破壊に達します:

      ε z < ε M A X _ C O M P or ε x < ε M A X _ C O M P × r a t i o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeWaaa qaaiabew7aLnaaBaaaleaacaWG6baabeaakiabgYda8iabew7aLnaa BaaaleaacaWGnbGaamyqaiaadIfacaGGFbGaam4qaiaad+eacaWGnb GaamiuaaqabaaakeaacaqGVbGaaeOCaaqaaiabew7aLnaaBaaaleaa caWG4baabeaakiabgYda8iabew7aLnaaBaaaleaacaWGnbGaamyqai aadIfacaGGFbGaam4qaiaad+eacaWGnbGaamiuaaqabaGccqGHxdaT caWGYbGaamyyaiaadshacaWGPbGaam4Baaaaaaa@576A@

    • COMP_DIR = 3の場合は、次のときに破壊に達します:

      ε x < ε M A X _ C O M P or ε y < ε M A X _ C O M P × r a t i o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeWaaa qaaiabew7aLnaaBaaaleaacaWG4baabeaakiabgYda8iabew7aLnaa BaaaleaacaWGnbGaamyqaiaadIfacaGGFbGaam4qaiaad+eacaWGnb GaamiuaaqabaaakeaacaqGVbGaaeOCaaqaaiabew7aLnaaBaaaleaa caWG5baabeaakiabgYda8iabew7aLnaaBaaaleaacaWGnbGaamyqai aadIfacaGGFbGaam4qaiaad+eacaWGnbGaamiuaaqabaGccqGHxdaT caWGYbGaamyyaiaadshacaWGPbGaam4Baaaaaaa@5768@

  8. 関数fct_IDelにより材料破壊での要素サイズを考慮し、破壊ひずみをスケーリングできます:(6)
    facto r el =fct_I D el ( Siz e el El_ref ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaam yyaiaadogacaWG0bGaam4BaiaadkhadaWgaaWcbaGaamyzaiaadYga aeqaaOGaeyypa0JaamOzaiaadogacaWG0bGaai4xaiaadMeacaWGeb WaaSbaaSqaaiaadwgacaWGSbaabeaakmaabmaabaWaaSaaaeaacaWG tbGaamyAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaO qaaiaadweacaWGSbGaai4xaiaadkhacaWGLbGaamOzaaaaaiaawIca caGLPaaaaaa@532C@

    ここで、 Siz e el MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3C14@ は参照要素メッシュサイズです。

  9. 圧縮での破壊では、要素は一切削除されず、損傷変数の値が1に設定されるだけです(これは指標として使用されます)。圧縮での要素削除をアクティブにするには、IDELフラグを1に設定します。
1 Elham Sahraei, Emanuela Bosco, Brandy Dixon, Benjamin Lai. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios