*MAT_156 (MUSCLE)

LS-DYNA入力インターフェースキーワード安全性用途向けの筋肉モデルを定義します。トラス要素でのみ使用されます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8)
*MAT_156または*MAT_MUSCLE
mat_ID ρ i   SR_MAX STS_MAX STR CER DAMP
FUNCT_1   FUNCT_2 FUNCT_3 FUNCT_4      

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数)

 
ρ i 初期密度

(実数)

[ kg m 3 ]
SR_MAX 最大ひずみ速度

(実数)

[ 1 s ]
STS_MAX 最大応力

[ Pa ]
STR 最大応力時のひずみ。

(実数)

 
CER FUNCT_4 = 0での解析的指数式のひずみスケールファクター。

(実数)

 
DAMP 減衰係数。

(実数)

[ Pas ]
FUNCT_1 時間に対するアクティブ化応力係数。
< 0
時間に対するアクティブ化レベルの曲線識別子。
> 0
アクティブ化レベルとして使用される定数値。

(実数)

 
FUNCT_2 ひずみの関数としてのアクティブ応力係数。
< 0
曲線の識別子
> 0
定数値1.0が使用されます。

(実数)

 
FUNCT_3 ひずみ速度の関数としてのアクティブ応力係数。
< 0
曲線の識別子
> 0
定数値1.0が使用されます。

(整数)

 
FUNCT_4 並列弾性要素のひずみの関数としての応力係数。
< 0
曲線の識別子
= 0
解析方程式が使用されます。 4
> 0
定数値1.0が使用されます。

(整数)

 

コメント

  1. このキーワードは/PROP/TYPE46 (SPR_MUSCLE)にマップされます。
  2. このキーワードは、トラス要素でのみ使用されます。トラス面積の入力は必須です。
  3. 要素内の全応力は次のように計算されます:(1)
    σ = σ 1 + σ 2 + σ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0Jaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3a aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaio daaeqaaaaa@4295@
    ここで、
    σ 1 = S T S _ M A X F U N C T _ 1 ( t ) F U N C T _ 2 ( Δ l ) F U N C T _ 3 ( ε ¯ ˙ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdaaeqaaOGaeyypa0deaaaaaaaaa8qacaWGtbGaamiv aiaadofacaGGFbGaamytaiaadgeacaWGybGaeyyXICTaamOraiaadw facaWGobGaam4qaiaadsfacaGGFbGaaGymaiaacIcacaWG0bGaaiyk aiabgwSixlaadAeacaWGvbGaamOtaiaadoeacaWGubGaai4xaiaaik dacaGGOaGaeuiLdqKaamiBaiaacMcacqGHflY1caWGgbGaamyvaiaa d6eacaWGdbGaamivaiaac+facaaIZaGaaiikaiqbew7aLzaaryaaca Gaaiykaaaa@60D6@
    収縮応力
    σ 2 = S T S _ M A X F U N C T _ 4 ( Δ l ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdaaeqaaOGaeyypa0deaaaaaaaaa8qacaWGtbGaamiv aiaadofacaGGFbGaamytaiaadgeacaWGybGaeyyXICTaamOraiaadw facaWGobGaam4qaiaadsfacaGGFbGaaGinaiaacIcacqqHuoarcaWG SbGaaiykaaaa@4B64@
    受動応力
    σ 3 = D M P Δ l ε ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaiodaaeqaaOGaeyypa0Jaamiraiaad2eacaWGqbGaeyyX ICTaeuiLdqKaamiBaiabgwSixlqbew7aLzaacaaaaa@44BA@
    減衰応力

    ここで、 Δ l = l c u r r e n t l o r i g i n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9maalaaabaGaamiBamaaBaaaleaacaWGJbGaamyDaiaa dkhacaWGYbGaamyzaiaad6gacaWG0baabeaaaOqaaiaadYgadaWgaa WcbaGaam4BaiaadkhacaWGPbGaam4zaiaadMgacaWGUbaabeaaaaaa aa@47F0@ ε=Δl1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaey ypa0JaeuiLdqKaamiBaiabgkHiTiaaigdaaaa@3C9F@ ε ˙ = Δε Δt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aacqGH9aqpdaWcaaqaaiabfs5aejabew7aLbqaaiabfs5aejaadsha aaaaaa@3E25@ ε ¯ ˙ = Δl ε ˙ SR_MAX MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaH1oqzgaqegaGaaiabg2da9maalaaabaGaeuiLdqKaamiBaiab gwSixlqbew7aLzaacaaabaGaam4uaiaadkfacaGGFbGaamytaiaadg eacaWGybaaaaaa@4448@

  4. FUNCT_4 = 0の場合、受動応力係数は次のように定義されます:
    次の場合; Δ l < 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabgYda8iaaigdaaaa@3A09@
    FUNCT_4(Δl)=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbGaamyvaiaad6eacaWGdbGaamivaiaac+facaaI0aGaaiik aiabfs5aejaadYgacaGGPaGaeyypa0JaaGimaaaa@413E@
    右記の場合; Δ l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabgwMiZkaaigdaaaa@3ACB@ CER0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadw eacaWGsbGaeyiyIKRaaGimaaaa@3ADE@
    FUNCT_4(Δl)= 1 exp(CER)1 exp CERε STR 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbGaamyvaiaad6eacaWGdbGaamivaiaac+facaaI0aGaaiik aiabfs5aejaadYgacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaci yzaiaacIhacaGGWbGaaiikaiaadoeacaWGfbGaamOuaiaacMcacqGH sislcaaIXaaaamaadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaada WcaaqaaiaadoeacaWGfbGaamOuaiabgwSixlabew7aLbqaaiaadofa caWGubGaamOuaaaaaiaawIcacaGLPaaacqGHsislcaaIXaaacaGLBb Gaayzxaaaaaa@5A84@
    右記の場合; Δl1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabgwMiZkaaigdaaaa@3ACB@ CER=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadw eacaWGsbGaeyypa0JaaGimaaaa@3A1D@
    FUNCT_4(Δl)= ε STR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbGaamyvaiaad6eacaWGdbGaamivaiaac+facaaI0aGaaiik aiabfs5aejaadYgacaGGPaGaeyypa0ZaaSaaaeaacqaH1oqzaeaaca WGtbGaamivaiaadkfaaaaaaa@44C3@
  5. このキーワードの最後にオプション“_TITLE”を追加することができます。“_TITLE”が含まれている場合、キーワード入力行の後に余分に80文字の長さの行が追加され、エンティティタイトルを定義できるようになります。