/MAT/LAW112(PAPERまたはXIA)

ブロックフォーマットキーワード Paperboard則では、2002年にXiaによって提唱された直交異方性の非対称弾塑性材料がモデル化されます。

基本原理は、紙シートの平面内の挙動と平面外の挙動を完全に分離するということです。引張状態と圧縮状態について、荷重方向ごとに降伏応力が定義されます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW112/mat_ID/unit_IDまたは/MAT/PAPER/mat_ID/unit_IDまたは/MAT/XIA/mat_ID/unit_ID
mat_title
ρ i                
E1 E2 E3 Ires Itab Ismooth  
ν 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGOmaiaaigdaaeqaaaaa@3ACA@ G12 G23 G13  
K E3C CC    
ν 1p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ ν 2 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ ν 4 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ ν 5 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@  
Itab = 0の場合は、連続的な降伏応力を挿入します。
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
S01 A01 B01 C01    
S02 A02 B02 C02    
S03 A03 B03 C03    
S04 A04 B04 C04    
S05 A05 B05 C05    
ASIG BSIG CSIG        
TAU0 ATAU BTAU        
Itab = 1の場合は、表形式の降伏応力を挿入します。
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
TAB_YLD1 MAT_Xscale1 MAT_Yscale1        
TAB_YLD2 MAT_Xscale2 MAT_Yscale2        
TAB_YLD3 MAT_Xscale3 MAT_Yscale3        
TAB_YLD4 MAT_Xscale4 MAT_Yscale4        
TAB_YLD5 MAT_Xscale5 MAT_Yscale5        
TAB_YLDC MAT_XscaleC MAT_YscaleC        
TAB_YLDS MAT_XscaleS MAT_YscaleS        

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位の識別子(オプション)

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度。

(実数)

[ kg m 3 ]
Ei i番目の直交異方性方向のヤング率。

(実数)

[ Pa ]
ν i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaamyAaiaadQgaaeqaaaaa@3B30@ i番目とj番目の直交異方性方向に関連するポアソン比。

(実数)

 
G i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3A44@ i番目とj番目の直交異方性方向に関連するせん断係数。

(実数)

[ Pa ]
Ires 塑性の解法。
= 0
2に設定されます。
= 1
NICE(Next Increment Correct Error)陽解法。
= 2(デフォルト)
Newton反復法 - 切断面。

(整数)

 
Itab 降伏応力の計算。
= 0
連続的な降伏応力。
= 1
表形式の降伏応力。

(整数)

 
Ismooth 補間タイプ(表形式降伏関数の場合)。
= 1(デフォルト)
線形補間。
= 2
対数補間(底10)。
=3
対数補間(底n)。

(整数)

 
K 面内降伏曲面指数。

デフォルト = 1.0(実数)

 
E3C 1つ目の弾性圧縮パラメータ。

デフォルト = E3(実数)

[ Pa ]
CC 2つ目の弾性圧縮パラメータ。

デフォルト = 1.0(実数)

 
ν 1p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ 方向1の引張塑性ポアソン比。

(実数)

 
ν 2 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ 方向2の引張塑性ポアソン比。

(実数)

 
ν 4 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ 方向1の圧縮塑性ポアソン比。

(実数)

 
ν 5 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBlm aaBaaabaGaaGymaiaadchaaeqaaaaa@3B03@ 方向2の圧縮塑性ポアソン比。

(実数)

 
S0i i番目の荷重方向の初期降伏応力。
各方向は、次の順序に従って特定の荷重方向に関連付けられています:
i=1
直交異方性方向1の引張。
i=2
直交異方性方向2の引張。
i=3
面内せん断。
i=4
直交異方性方向1の圧縮。
i=5
直交異方性方向2の圧縮。
i=C
面外方向3の圧縮。
i=S
横せん断方向。

デフォルト = 1.0e20(実数)

[ Pa ]
A0i i番目の荷重方向の1つ目の硬化パラメータ。

(実数)

[ Pa ]
B0i i番目の荷重方向の2つ目の硬化パラメータ。

(実数)

 
C0i i番目の荷重方向の3つ目の硬化パラメータ。

(実数)

[ Pa ]
ASIG 圧縮での初期面外降伏応力。

デフォルト = 1.0e20(実数)

[ Pa ]
BSIG 圧縮での1つ目の面外硬化パラメータ。

(実数)

[ Pa ]
CSIG 圧縮での2つ目の面外硬化パラメータ。

(実数)

 
TAU0 初期横せん断降伏応力。

デフォルト = 1.0e20(実数)

[ Pa ]
ATAU 1つ目の横せん断硬化パラメータ。

(実数)

[ Pa ]
BTAU 2つ目の横せん断硬化パラメータ。

(実数)

 
TAB_YLDi i番目の荷重方向の表形式の降伏応力 - 塑性ひずみ - ひずみ速度関数の識別子。

(整数)

 
MAT_Xscalei i番目の荷重方向の表形式の降伏 - 塑性ひずみ - ひずみ速度関数のXスケールファクター。

デフォルト = 1.0(実数)

[Hz]
MAT_Yscalei i番目の荷重方向の表形式の降伏 - 塑性ひずみ - ひずみ速度関数のYスケールファクター。

デフォルト = 1.0(実数)

[ Pa ]

例(紙)

#RADIOSS STARTER
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW112/1/1
Xia
#              RHO_I
            7.83E-10
#                 E1                  E2                  E3      Ires      Itab   Ismooth       
                4193                1554                1554         2         0         0
#               nu21                 G12                 G23                 G13  
              0.1011                 988                  76                  76
#                  K                 E3C                  CC                 
                 2.0                47.2               24.46                 
#               nu1p                nu2p                nu4p                nu5p
               0.555              0.1537                0.18               0.145
#                S01                 A01                 B01                 C01
                12.0                19.0               260.0               800.0
#                S02                 A02                 B02                 C02
                 6.5                40.0               160.0               250.0
#                S03                 A03                 B03                 C03       
                 6.0                11.0               100.0               125.0
#                S04                 A04                 B04                 C04
                 7.3                 6.0               160.0               300.0
#                S05                 A05                 B05                 C05
                 6.3                 9.0               310.0               225.0
#               ASIG                BSIG                CSIG
               16.55               16.55                3.16
#               TAU0                ATAU                BTAU
                 2.1                 9.0                 2.0    
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA

例(表形式)

#RADIOSS STARTER
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|          
/MAT/LAW112/1/1
Xia_tab
#              RHO_I
            7.83E-10
#                 E1                  E2                  E3      Ires      Itab   Ismooth       
                4193                1554                1554         1         1         1
#               nu21                 G12                 G23                 G13 
              0.1011                 988                  76                  76
#                  K                 E3C                  CC                 
                 2.0                47.2               24.46                 
#               nu1p                nu2p                nu4p                nu5p
               0.555              0.1537                0.18               0.145
#           TAB_YLD1         MAT_Xscale1         MAT_Yscale1
                  25                 1.0                 1.0
#           TAB_YLD2         MAT_Xscale2         MAT_Yscale2
                  25                 1.0                0.35
#           TAB_YLD3         MAT_Xscale3         MAT_Yscale3
                  25                 1.0                0.75
#           TAB_YLD4         MAT_Xscale4         MAT_Yscale4
                  25                 1.0              0.6341
#           TAB_YLD5         MAT_Xscale5         MAT_Yscale5
                  25                 1.0                 0.5
#           TAB_YLDC         MAT_XscaleC         MAT_YscaleC
                  25                 1.0                 0.5
#           TAB_YLDS         MAT_XscaleS         MAT_YscaleS
                  25                 1.0                 0.5 
/FUNCT/46
ecoulement2   
#     plastic strain              stress                                                                                
                 0.0	           12.00
               0.012	 32.979020979021
               0.025	50.4615384615385
                0.05	            74.5
               0.075	90.9473684210526
                 0.1	102.909090909091
               0.125	          112.00
                0.15	119.142857142857
               0.175	124.903225806452
                 0.2	129.647058823529
                0.25	          137.00
                 0.3	142.434782608696
                 0.4	149.931034482759
                 0.5	154.857142857143
                 1.0	165.846153846154   
/TABLE/1/25
Yld Functions : plastic strain + strain rate dependency
#DIMENSION
         2
#   FCT_ID                   strain rate                                                     Scale_y
        46                           0.0                                                        1.00
        46                           1.0                                                        1.10
        46                           5.0                                                        1.15
        46                          10.0                                                        1.20
        46                         100.0                                                        1.25
        46                      100000.0                                                        1.35  
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata

コメント

  1. Paperboard材料則の挙動を表すために、次の直交異方性方向が考慮されます。


    図 1.
  2. この材料則の弾性挙動は直交異方性です。
    面内挙動は、面外挙動と完全に分離される必要があり、次のように計算されます:(1)
    { σ xx = C 11 ε xx + C 12 ε yy σ yy = C 21 ε xx + C 22 ε yy σ xy = G 12 γ xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiabeo8aZnaaBaaaleaacaWG4bGaamiEaaqabaGccqGH9aqpcaWG dbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabew7aLnaaBaaaleaaca WG4bGaamiEaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaigdacaaI Yaaabeaakiabew7aLnaaBaaaleaacaWG5bGaamyEaaqabaaakeaacq aHdpWCdaWgaaWcbaGaamyEaiaadMhaaeqaaOGaeyypa0Jaam4qamaa BaaaleaacaaIYaGaaGymaaqabaGccqaH1oqzdaWgaaWcbaGaamiEai aadIhaaeqaaOGaey4kaSIaam4qamaaBaaaleaacaaIYaGaaGOmaaqa baGccqaH1oqzdaWgaaWcbaGaamyEaiaadMhaaeqaaaGcbaGaeq4Wdm 3aaSbaaSqaaiaadIhacaWG5baabeaakiabg2da9iaadEeadaWgaaWc baGaaGymaiaaikdaaeqaaOGaeq4SdC2aaSbaaSqaaiaadIhacaWG5b aabeaaaaGccaGL7baaaaa@674D@

    ここで、 C = 1 1 ν 12 ν 21 [ E 1 ν 12 E 2 ν 21 E 1 E 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaC4qaiabg2 da9maalaaabaGaaGymaaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWc baGaaGymaiaaikdaaeqaaOGaeqyVd42aaSbaaSqaaiaaikdacaaIXa aabeaaaaGcdaWadaqaauaabeqaciaaaeaacaWGfbWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeqyVd42aaSbaaSqaaiaaigdacaaIYaaabeaaki aadweadaWgaaWcbaGaaGOmaaqabaaakeaacqaH9oGBdaWgaaWcbaGa aGOmaiaaigdaaeqaaOGaamyramaaBaaaleaacaaIXaaabeaaaOqaai aadweadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@50BD@

    横せん断成分は次のように計算されます:(2)
    { σ y z = G 23 ε y z σ z x = G 21 ε z x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiabeo8aZnaaBaaaleaacaWG5bGaamOEaaqabaGccqGH9aqpcaWG hbWaaSbaaSqaaiaaikdacaaIZaaabeaakiabew7aLnaaBaaaleaaca WG5bGaamOEaaqabaaakeaacqaHdpWCdaWgaaWcbaGaamOEaiaadIha aeqaaOGaeyypa0Jaam4ramaaBaaaleaacaaIYaGaaGymaaqabaGccq aH1oqzdaWgaaWcbaGaamOEaiaadIhaaeqaaaaakiaawUhaaaaa@4DB3@
    面外弾性挙動(ソリッドのみ)は単軸相当問題として扱われます。ただし、応力の計算は引張と圧縮では異なる可能性があります。圧縮荷重の場合、弾性は非線形になります。(3)
    σ z z = E 3 ε z z e if ε z z e 0 σ z z = E 3 C ( 1 e C c ε z z e ) if ε z z e < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaqbaeqabiWaaa qaaiabeo8aZnaaBaaaleaacaWG6bGaamOEaaqabaGccqGH9aqpcaWG fbWaaSbaaSqaaiaaiodaaeqaaOGaeqyTdu2aa0baaSqaaiaadQhaca WG6baabaGaamyzaaaaaOqaaiaabMgacaqGMbaabaGaeqyTdu2aa0ba aSqaaiaadQhacaWG6baabaGaamyzaaaakiabgwMiZkaaicdaaeaacq aHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaOGaeyypa0Jaamyramaa BaaaleaacaaIZaGaam4qaaqabaGccaGGOaGaaGymaiabgkHiTiGacw gadaahaaWcbeqaaiabgkHiTiaadoeadaWgaaadbaGaam4yaaqabaWc cqaH1oqzdaqhaaadbaGaamOEaiaadQhaaeaacaWGLbaaaaaakiaacM caaeaacaqGPbGaaeOzaaqaaiabew7aLnaaDaaaleaacaWG6bGaamOE aaqaaiaadwgaaaGccqGH8aapcaaIWaaaaaaa@6632@
  3. Xia 2002の定式化では、面内降伏基準( f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa@385A@ )は次のように定義されます:(4)
    f = I = 1 6 χ I ( σ : N I σ Y I ) 2 k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaey ypa0ZaaabCaeaacqaHhpWydaWgaaWcbaGaamysaaqabaGcdaqadaqa amaalaaabaGaaC4WdiaacQdacaWHobWaaSbaaSqaaiaahMeaaeqaaa GcbaGaeq4Wdm3aa0baaSqaaiaadMfaaeaacaWGjbaaaaaaaOGaayjk aiaawMcaaaWcbaGaamysaiabg2da9iaaigdaaeaacaaI2aaaniabgg HiLdGcdaahaaWcbeqaaiaaikdacaWGRbaaaOGaeyOeI0IaaGymaaaa @4E6C@

    ここで、

    χ I = { 1 if σ : N I > 0 0 otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaS baaSqaaiaadMeaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGadaaabaGa aGymaaqaaiaabMgacaqGMbaabaGaaC4WdiaahQdacaWHobWaaSbaaS qaaiaahMeaaeqaaOGaeyOpa4JaaGimaaqaaiaaicdaaeaacaqGVbGa aeiDaiaabIgacaqGLbGaaeOCaiaabEhacaqGPbGaae4Caiaabwgaae aaaaaacaGL7baaaaa@4C54@
    χ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWyda WgaaWcbaGaamysaaqabaaaaa@3A20@
    切り替えパラメータ。
    σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHdpaaaa@38BE@
    Cauchy応力テンソル。
    N I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHobWaaS baaSqaaiaahMeaaeqaaaaa@3944@
    降伏平面の法線方向。
    σ Y I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamywaaqaaiaadMeaaaaaaa@3B0B@
    降伏応力。
    k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36C6@
    正の整数。
    各方向は、以下に定義する順序に従って特定の荷重方向に関連付けられています:
    1
    直交異方性方向1の引張。
    2
    直交異方性方向2の引張。
    3
    正の面内せん断。
    4
    直交異方性方向1の圧縮。
    5
    直交異方性方向2の圧縮。
    6
    負の面内せん断(正の面内せん断 σ Y 6 = σ Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamywaaqaaiaaiAdaaaGccqGH9aqpcqaHdpWCdaqhaaWc baGaamywaaqaaiaaiodaaaaaaa@3F98@ と同じ入力)。

    降伏平面の法線方向ベクトルは次のとおりです:

    N 1 = [ 1 1 + ν 1 p 2 ν 1 p 1 + ν 1 p 2 0 0 0 0 ] N 2 = [ ν 2 p 1 + ν 2 p 2 1 1 + ν 2 p 2 0 0 0 0 ] N 3 = [ 0 0 0 1 0 0 ] N 4 = [ 1 1 + ν 4 p 2 ν 4 p 1 + ν 4 p 2 0 0 0 0 ] N 5 = [ ν 5 p 1 + ν 5 p 2 1 1 + ν 5 p 2 0 0 0 0 ] N 6 = [ 0 0 0 1 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaah6 eadaWgaaWcbaGaaCymaaqabaGccqGH9aqpdaWadaqaauaabeqabyaa aaqaamaalaaabaGaaGymaaqaamaakaaabaGaaGymaiabgUcaRiabe2 7aUnaaDaaaleaacaaIXaGaamiCaaqaaiaaikdaaaaabeaaaaaakeaa cqGHsisldaWcaaqaaiabe27aUnaaBaaaleaacaaIXaGaamiCaaqaba aakeaadaGcaaqaaiaaigdacqGHRaWkcqaH9oGBdaqhaaWcbaGaaGym aiaadchaaeaacaaIYaaaaaqabaaaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaaaaiaawUfacaGLDbaaaeaacaWHobWaaSba aSqaaiaaikdaaeqaaOGaeyypa0ZaamWaaeaafaqabeqagaaaaeaacq GHsisldaWcaaqaaiabe27aUnaaBaaaleaacaaIYaGaamiCaaqabaaa keaadaGcaaqaaiaaigdacqGHRaWkcqaH9oGBdaqhaaWcbaGaaGOmai aadchaaeaacaaIYaaaaaqabaaaaaGcbaWaaSaaaeaacaaIXaaabaWa aOaaaeaacaaIXaGaey4kaSIaeqyVd42aa0baaSqaaiaaikdacaWGWb aabaGaaGOmaaaaaeqaaaaaaOqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaaaacaGLBbGaayzxaaaabaGaaCOtamaaBaaaleaaca aIZaaabeaakiabg2da9maadmaabaqbaeqabeGbaaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaaaa Gaay5waiaaw2faaaqaaiaah6eadaWgaaWcbaGaaGinaaqabaGccqGH 9aqpdaWadaqaauaabeqabyaaaaqaaiabgkHiTmaalaaabaGaaGymaa qaamaakaaabaGaaGymaiabgUcaRiabe27aUnaaDaaaleaacaaI0aGa amiCaaqaaiaaikdaaaaabeaaaaaakeaadaWcaaqaaiabe27aUnaaBa aaleaacaaI0aGaamiCaaqabaaakeaadaGcaaqaaiaaigdacqGHRaWk cqaH9oGBdaqhaaWcbaGaaGinaiaadchaaeaacaaIYaaaaaqabaaaaa GcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfa caGLDbaaaeaacaWHobWaaSbaaSqaaiaaiwdaaeqaaOGaeyypa0Zaam WaaeaafaqabeqagaaaaeaadaWcaaqaaiabe27aUnaaBaaaleaacaaI 1aGaamiCaaqabaaakeaadaGcaaqaaiaaigdacqGHRaWkcqaH9oGBda qhaaWcbaGaaGynaiaadchaaeaacaaIYaaaaaqabaaaaaGcbaGaeyOe I0YaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIXaGaey4kaSIaeqyVd4 2aa0baaSqaaiaaiwdacaWGWbaabaGaaGOmaaaaaeqaaaaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaaaacaGLBbGaayzxaa aabaGaaCOtamaaBaaaleaacaaI2aaabeaakiabg2da9maadmaabaqb aeqabeGbaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0 IaaGymaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaaw2faaaaaaa@AFBD@

    各方向 I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbaaaa@383D@ は、次の式で表される特定の降伏応力に関連付けられています:

    σ Y I = S I 0 + A I 0 tanh ( B I 0 ε p f ) + C I 0 ε p f with I [ 1 , 6 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqabeqaca aabaGaeq4Wdm3aa0baaSqaaiaadMfaaeaacaWGjbaaaOGaeyypa0Ja am4uamaaDaaaleaacaWGjbaabaGaaGimaaaakiabgUcaRiaadgeada qhaaWcbaGaamysaaqaaiaaicdaaaGcciGG0bGaaiyyaiaac6gacaGG ObWaaeWaaeaacaWGcbWaa0baaSqaaiaadMeaaeaacaaIWaaaaOGaeq yTdu2aa0baaSqaaiaadchaaeaacaWGMbaaaaGccaGLOaGaayzkaaGa ey4kaSIaam4qamaaDaaaleaacaWGjbaabaGaaGimaaaakiabew7aLn aaDaaaleaacaWGWbaabaGaamOzaaaaaOqaauaabeqabiaaaeaacaqG 3bGaaeyAaiaabshacaqGObaabaGaamysaiabgIGiopaadmaabaGaaG ymaiaacYcacaaI2aaacaGLBbGaayzxaaaaaaaaaaa@5F1B@

    ここで、 ε p f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadAgaaaaaaa@3B23@ は面内相当塑性ひずみ(降伏関数 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36C1@ に関連付けられています)です。

    面外降伏関数は g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@385B@ と表され、次のように定義されます:

    g = σ z z σ Y C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbGaey ypa0JaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaakiab gkHiTiabeo8aZnaaDaaaleaacaWGzbaabaGaam4qaaaaaaa@42C8@ ここで、 σ Y C = A σ + B σ exp( C σ ε p g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamywaaqaaiaadoeaaaGccqGH9aqpcaWGbbWaaSbaaSqa aiabeo8aZbqabaGccqGHRaWkcaWGcbWaaSbaaSqaaiabeo8aZbqaba GcciGGLbGaaiiEaiaacchacaGGOaGaam4qamaaBaaaleaacqaHdpWC aeqaaOGaeqyTdu2aa0baaSqaaiaadchaaeaacaWGNbaaaOGaaiykaa aa@4D2A@

    ここで、 ε p g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadEgaaaaaaa@3B24@ は面外相当塑性ひずみ(降伏関数 g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@385B@ に関連付けられています)です。

    横せん断降伏関数は次のとおりです:(5)
    h = σ y z 2 + σ z x 2 σ Y S 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObGaey ypa0ZaaSaaaeaadaGcaaqaaiabeo8aZnaaDaaaleaacaWG5bGaamOE aaqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaamOEaiaadI haaeaacaaIYaaaaaqabaaakeaacqaHdpWCdaqhaaWcbaGaamywaaqa aiaadofaaaaaaOGaeyOeI0IaaGymaaaa@4921@
    ここで、
    σ Y S = τ 0 + [ A τ min ( 0 , σ z z ) B τ ] ε p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamywaaqaaiaadofaaaGccqGH9aqpcqaHepaDdaWgaaWc baGaaGimaaqabaGccqGHRaWkdaWadaqaaiaadgeadaWgaaWcbaGaeq iXdqhabeaakiabgkHiTiGac2gacaGGPbGaaiOBaiaacIcacaaIWaGa aiilaiabeo8aZnaaBaaaleaacaWG6bGaamOEaaqabaGccaGGPaGaam OqamaaBaaaleaacqaHepaDaeqaaaGccaGLBbGaayzxaaGaeqyTdu2a a0baaSqaaiaadchaaeaacaWGObaaaaaa@5560@
    ε p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadIgaaaaaaa@3B25@
    面外相当塑性ひずみ(降伏関数 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@385B@ に関連付けられています)。

    表形式の降伏応力オプションが選択されている場合(Itab = 1)、各降伏応力は、複数の塑性ひずみ速度で塑性ひずみに応じた応力変化を定義するテーブル(TAB_YLDi)に関連付けられています。各テーブルのX方向とY方向に2つのスケールファクターを定義することもできます。この場合、硬化パラメータ S 0 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaic dacaWGPbaaaa@3856@ A 0 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaic dacaWGPbaaaa@3856@ B 0 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaic dacaWGPbaaaa@3856@ C 0 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaic dacaWGPbaaaa@3856@ A σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacqaHdpWCaeqaaaaa@388B@ B σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacqaHdpWCaeqaaaaa@388B@ C σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacqaHdpWCaeqaaaaa@388B@ τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHepaDda WgaaWcbaGaaGimaaqabaaaaa@3A1A@ A τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiabes8a0bqabaaaaa@3A26@ B τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbWaaS baaSqaaiabes8a0bqabaaaaa@3A27@ は無視され、降伏応力は次のようになります:

    σ Y I = f Y t a b _ Y L D I ( ε p f , ε ˙ p f ) I [ 1 , 6 ] σ Y C = f Y t a b _ Y L D C ( ε p g , ε ˙ p g ) σ Y S = f Y t a b _ Y L D S ( ε p h , ε ˙ p h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaauaabe qabiaaaeaacqaHdpWCdaqhaaWcbaGaamywaaqaaiaadMeaaaGccqGH 9aqpcaWGMbWaa0baaSqaaiaadMfaaeaacaWG0bGaamyyaiaadkgaca GGFbGaamywaiaadYeacaWGebGaamysaaaakiaacIcacqaH1oqzdaqh aaWcbaGaamiCaaqaaiaadAgaaaGccaGGSaGafqyTduMbaiaadaqhaa WcbaGaamiCaaqaaiaadAgaaaGccaGGPaaabaGaamysaiabgIGiopaa dmaabaGaaGymaiaacYcacaaI2aaacaGLBbGaayzxaaaaaaqaaiabeo 8aZnaaDaaaleaacaWGzbaabaGaam4qaaaakiabg2da9iaadAgadaqh aaWcbaGaamywaaqaaiaadshacaWGHbGaamOyaiaac+facaWGzbGaam itaiaadseacaWGdbaaaOGaaiikaiabew7aLnaaDaaaleaacaWGWbaa baGaam4zaaaakiaacYcacuaH1oqzgaGaamaaDaaaleaacaWGWbaaba Gaam4zaaaakiaacMcaaeaacqaHdpWCdaqhaaWcbaGaamywaaqaaiaa dofaaaGccqGH9aqpcaWGMbWaa0baaSqaaiaadMfaaeaacaWG0bGaam yyaiaadkgacaGGFbGaamywaiaadYeacaWGebGaam4uaaaakiaacIca cqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadIgaaaGccaGGSaGafqyTdu MbaiaadaqhaaWcbaGaamiCaaqaaiaadIgaaaGccaGGPaaaaaa@837C@

    出力フィールドでは、相当“全体”塑性ひずみは次のように計算されます:(6)
    ε p = ( ε p f ) 2 + ( ε p g ) 2 + ( ε p h ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiCaaqabaGccqGH9aqpdaGcaaqaaiaacIcacqaH1oqz daqhaaWcbaGaamiCaaqaaiaadAgaaaGccaGGPaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaiikaiabew7aLnaaDaaaleaacaWGWbaabaGa am4zaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOa GaeqyTdu2aa0baaSqaaiaadchaaeaacaWGObaaaOGaaiykamaaCaaa leqabaGaaGOmaaaaaeqaaaaa@4F32@