Turbulent Transition Models

All of the previously described models are incapable of predicting boundary layer transition. To include the effects of transition additional equations are necessary.

Transitional flows can be found in many industrial application cases including gas turbine blades, airplane wings and wind turbines. It is known that conventional turbulence models over predict the wall shear stress for transitional flows. Thus, transition models can be used to improve the accuracy of CFD solutions when flows encounter turbulent transition of the boundary layer.

γ-Reθ Model

Langtry and Menter (2009) proposed one of the most commonly used transition models in industrial CFD applications. The γReθγReθ model is a correlation based intermittency model that predicts natural, bypass and separation induced transition mechanisms.

The γReθγReθ model is coupled with the Shear Stress Transport (SST) turbulence model and requires two additional transport equations for the turbulence intermittency (γγ) and transition momentum thickness Reynolds number (ReθReθ). The turbulence intermittency is a measure of the flow regime and is defined as γ=tturbulenttlaminar+tturbulentγ=tturbulenttlaminar+tturbulent where tturbulenttturbulent represents the time that the flow is turbulent at a given location, while tlaminartlaminar represents the time that the flow is laminar.

For example, while the intermittency value is zero, the flow is considered to be laminar. A value of one is for fully turbulent flow. The transition momentum thickness Reynolds number is responsible for capturing the non local effects of turbulence intensity and is defined as Reθ=ρˉu θμReθ=ρ¯u θμ where the momentum thickness is θ=δ0uˉu(1uˉu)dyθ=δ0u¯u(1u¯u)dy.

To couple with the SST model, Langtry and Menter (2009) modified the production term and dissipation term of the turbulent kinetic energy to account for the changes in the flow intermittency.

Transport Equations

Turbulent Kinetic Energy k (1) (ρk)t+(ρ¯ujk)xj =xj[(μ+σkμt)kxj]+˜Pk+Dk(ρk)t+(ρ¯¯¯¯ujk)xj =xj[(μ+σkμt)kxj]+˜Pk+Dk
Eddy Frequency (Specific Dissipation Rate) ω(2) (ρω)t+(ρ¯ujω)xj =xj[(μ+σωμt)ωxj]+Pω+Dω+2(1F1)ρ σω2ωkxjωxj(ρω)t+(ρ¯¯¯¯ujω)xj =xj[(μ+σωμt)ωxj]+Pω+Dω+2(1F1)ρ σω2ωkxjωxj
Turbulent Intermittency γγ(3) (ργ)t+(ρ¯ujγ)xj =xj[(μ+μtσf)γxj]+Pγ+Dγ(ργ)t+(ρ¯¯¯¯ujγ)xj =xj[(μ+μtσf)γxj]+Pγ+Dγ
Transition Momentum Thickness Reynolds Number ReθReθ (4) (ρ Reθ)t+(ρ¯ujReθ)xj =xj[σf(μ+μt)Reθxj]+Pθ(ρ Reθ)t+(ρ¯¯¯¯ujReθ)xj =xj[σf(μ+μt)Reθxj]+Pθ

Production Modeling

Turbulent Kinetic Energy k (5) ˜Pk=γeff min(Pk, 10ρβ*kω)¯uixj˜Pk=γeff min(Pk, 10ρβkω)¯¯¯uixj
where
  • Production Pk=μtS2Pk=μtS2
  • Strain rate magnitude S=2SijSijS=2SijSij
  • Strain rate tensor Sij=12(¯uixj+¯ujxi)Sij=12(¯¯¯uixj+¯¯¯¯ujxi)
  • Constant β*β
Turbulent Dissipation Rate ε (6) Pε=αρS2Pε=αρS2
where
  • Blending function for specifying constants α=α1F1+α2(1F1)α=α1F1+α2(1F1)
  • α1=59α1=59 for the inner layer
  • α2α2 = 0.44 for the outer layer.

    Turbulent Intermittency γγ

(7) Pγ=FlengthCa1 S (γFonset)(1γCCe1)Pγ=FlengthCa1 S (γFonset)(1γCCe1)

where Fonset=max{min(max[Reν2.193 Reθ0,(Reν2.193 Reθ0)4],2)max(1(RT2.5)3,0)}Fonset=max{min(max[Reν2.193 Reθ0,(Reν2.193 Reθ0)4],2)max(1(RT2.5)3,0)} Reν=Sd2νReν=Sd2ν, RT=kνωRT=kνω

Transition Momentum Thickness Reynolds Number ReθReθ

(8) Pθ=Cθt1t(Reθ¯Reθ)(1Fθ)Pθ=Cθt1t(Reθ¯¯¯¯¯¯Reθ)(1Fθ)

where Fθ=min(max[Fwakee(dδ)4,   1(γ1/Ce211/Ce2)2],1)Fθ=min(max[Fwakee(dδ)4,   1(γ1/Ce211/Ce2)2],1), Fwake=e(Reω1E+5)2Fwake=e(Reω1E+5)2, Reω=ωd2νReω=ωd2ν, δ=50ΩdˉuδBLδ=50Ωd¯uδBL, δBL=7.5θBLδBL=7.5θBL, θBL=¯ReθνˉuθBL=¯¯¯¯¯¯Reθν¯u

Dissipation Modeling

Turbulent Kinetic Energy k(9) Dk=min(max[γeff, 0.1],1.0)ρβ*kωDk=min(max[γeff, 0.1],1.0)ρβkω
Turbulent Dissipation Rate ω (10) Dω=ρβω2Dω=ρβω2
Turbulent Intermittency γγ(11) Dγ=Ca2FturbulentΩγ(Ce2 γ1)Dγ=Ca2FturbulentΩγ(Ce2 γ1)

where Fturbulent=e(RT4)4

Modeling of Turbulent Viscosity μt

(12) μt=ρ a1 kmax(a1ω, S F2)
where
  • The second blending function F2=tanh(max(2kβ*ω d, 500νd2ω))2,
  • Fluid kinematic viscosity ν,
  • Constant β*.

Correlations

(13) Reθ=(1173.51589.428 Tu+ 0.2196Tu2)F(λθ)
(14) Reθt={(1173.51589.428 Tu+ 0.2196Tu2)F(λθ)  for  Tu1.3331.5(Tu0.5658)0.671 F(λθ),    for  Tu>1.3
(15) F(λθ){1(12.986λθ123.66λθ2405.689λθ3) e(Tu1.5)5 for  λθ01+0.275(1e35λθ)0.671 e(Tu1.5),    for  λθ>0

where λθ=θ2νdˉuds is the pressure gradient.

Model Coefficients

β* = 0.09.

The following constants for SST are computed by a blending function ϕ=ϕ1F1+ϕ2(1F1): σω1 = 0.5, σω2 = 0.856, σk1 = 0.85, σk2 = 1.00, β1=340, β2 = 0.0828. Ce1 = 1.0, Ce2 = 50, Ca1 = 2.0, Ca2 = 0.06, Cθ1 = 1.0, Cθ2 = 2.0, σf = 1.0.