OptiStruct is a proven, modern structural solver with comprehensive, accurate and scalable solutions for linear and nonlinear
analyses across statics and dynamics, vibrations, acoustics, fatigue, heat transfer, and multiphysics disciplines.
The OptiStruct Example Guide is a collection of solved examples for various solution sequences and optimization types and provides
you with examples of the real-world applications and capabilities of OptiStruct.
This section presents nonlinear small displacement analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents nonlinear large displacement analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents nonlinear transient analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents normal modes analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
Demonstrates the use of pre-loading with Normal Mode Analysis. Pre-Loaded Analysis is a type of structural analysis performed
on a structure under prior loading (Pre-Loading).
This section presents complex eigenvalue analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents thermal and heat transfer analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents analysis technique examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents shape optimization example problems, solved using OptiStruct. Each example uses a problem description, execution procedures and results to demonstrate how OptiStruct is used in shape optimization.
The examples in this section demonstrate how topography optimization generates both bead reinforcements in stamped
plate structures and rib reinforcements for solid structures.
The examples in this section demonstrate how the Equivalent Static Load Method (ESLM) can be used for the optimization
of flexible bodies in multibody systems.
This section presents multiphysic examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents response spectrum examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents nonlinear explicit analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
This section presents piezoelectric analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
The OptiStruct Example Guide is a collection of solved examples for various solution sequences and optimization types and provides
you with examples of the real-world applications and capabilities of OptiStruct.
This section presents normal modes analysis examples generated using OptiStruct. Each example uses a problem description, execution procedures, and results to demonstrate how OptiStruct is used.
Demonstrates the use of pre-loading with Normal Mode Analysis. Pre-Loaded Analysis is a type of structural analysis performed
on a structure under prior loading (Pre-Loading).
Demonstrates the use of pre-loading with Normal Mode Analysis.
Pre-Loaded Analysis is a type of structural analysis performed on a structure
under prior loading (Pre-Loading).
The response of a structure is affected by its initial state and this is in turn affected
by the various preloading applied to the structure, prior to the analysis of interest. Here,
do a comparison study the normal model analysis, with and without pre-load effect using a
chair frame.
Model Files
Before you begin, copy the file(s) used in this example to
your working directory.