/BEM/DAA
Block Format Keyword Doubly Asymptotic Approximation for Underwater Explosion, where the fluid mass matrix is computed by boundary element method.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/BEM/DAA/daa_ID/unit_ID | |||||||||
daa_title | |||||||||
surf_ID | grav_ID | ||||||||
ρρ | C | Pmin | |||||||
Xs | Ys | Zs | |||||||
Iform | Ipri | Ipres | Kform | Freesurf | Afterflow | Integr |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Pm | θθ | a | aθaθ |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDP | FscaleP |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Xc | Yc | Zc |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
XA | YA | ZA | |||||||
Dir-X | Dir-Y | Dir-Z |
Definition
Field | Contents | SI Unit Example |
---|---|---|
daa_ID | DAA block
identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
daa_title | DAA block
title. (Character, maximum 100 characters) |
|
surf_ID | Wet surface identifier.
2
3 (Integer) |
|
grav_ID | /GRAV
option identifier. (Integer) |
|
ρρ | Fluid
density. (Real) |
[kgm3][kgm3] |
C | Fluid sound
speed. (Real) |
[ms][ms] |
Pmin | Pressure cutoff (<
0). Default = -1030 (Real) |
[Pa][Pa] |
Xs | X-coordinate of standoff
point. 3 (Real) |
[m][m] |
Ys | Y-coordinate of standoff
point. 3 (Real) |
[m][m] |
Zs | Z-coordinate of standoff
point. 3 (Real) |
[m][m] |
Iform | BEM solution flag.
(Integer) |
|
Ipri | Printout flag level.
(Integer) |
|
Ipres | Pressure loading flag.
6
(Integer) |
|
Kform | Analysis flag.
(Integer) |
|
Freesurf | Free surface flag. 6
(Integer) |
|
Afterflow | Afterflow computation.
7
(Integer) |
|
Integr | Time integer flag.
(Integer) |
|
Pm | Maximum pressure. 5 (Real) |
[Pa][Pa] |
θθ | Decay
time. (Real) |
[s][s] |
a | Maximum pressure constant.
5 (Real) |
|
aθaθ | Pressure decay time
constant. 5 (Real) |
|
fct_IDP | Incident pressure function
identifier. (Integer) |
|
FscaleP | Ordinate (pressure) scale
factor for
fct_IDP. (Real) |
[Pa][Pa] |
XC | X-coordinate of explosive
charge. (Real) |
[m][m] |
YC | Y-coordinate of explosive
charge. (Real) |
[m][m] |
ZC | Z-coordinate of explosive
charge. (Real) |
[m][m] |
XA | X-coordinate of point A on
the free surface. (Real) |
[m][m] |
YA | Y-coordinate of point A on
the free surface. (Real) |
[m][m] |
ZA | Z-coordinate of point A on
the free surface. (Real) |
[m][m] |
Dir-X | X-component of the normal
to the free surface plane. (Real) |
|
Dir-Y | Y-component of the normal
to the free surface plane. (Real) |
|
Dir-Z | Z-component of the normal
to the free surface plane. (Real) |
Comments
- The entire structure must be modeled. Symmetric analysis is not supported.
- The surface normal nn should be pointed into the fluid.
- Standoff point defined with
(Xs,
Ys,
Zs) is the location where the incident
pressure wave is given at time t=0:Figure 1.
- A plane wave can be simulated using a spherical wave and putting the explosive charge far enough away.
- Pressure at the standoff point as
a function of time is:
(1) Pi(t)=Pme−tθPi(t)=Pme−tθWhere,- PmPm
- Maximum pressure
- tt
- Time
- θθ
- Decay time
The maximum pressure and decay time can be calculated using:(2) Pm=K[W13R]aPm=K[W1/3R]a(3) θ=KθW13[W13R]aθθ=KθW1/3[W1/3R]aθ- WW
- Explosive mass.
- RR
- Distance to the explosion.
- KK , αα , KθKθ and aθaθ
- Constants depending on the explosive.
If WW in kg, RR in meter, PmPm in MPa and in ms.KK αα KθKθ aθaθ TNT 52.12 1.180 0.0895 -0.185 PETN 56.21 1.194 0.0860 -0.257 HBX 53.51 1.144 0.0920 -0.247 - A free surface is a plane defined by a point and its normal vector.
- The afterflow normal velocity is
calculated as:
(4) vafterflow=cosγρR∫t0P(t)dtvafterflow=cosγρR∫t0P(t)dt- P
- Fluid point.
- C
- Explosive charge point.
- S
- Standoff point.
Figure 2.