/MAT/LAW6 (HYDRO or HYD_VISC)
Block Format Keyword Describes a fluid material. Pressure is computed using Equation of State provided by definition of /EOS option.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID or /MAT/HYD_VISC/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρi | ρ0 | ||||||||
ν | Pmin |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
ρi | Initial density. (Real) |
[kgm3] |
ρ0 | Reference density used in E.O.S (equation of
state). Default = ρ0=ρi (Real) |
[kgm3] |
ν | Kinematic viscosity. (Real) |
[m2s] |
Pmin | Pressure cut-off. Default = -1.0 x 1020 (Real) |
[Pa] |
▸Example (Air)
Comments
-
Sij=2ρνeq˙eij
Where,
- νeq=ν
- No turbulence
- Sij
- Deviatoric stress tensor
- ˙eij
- Deviatoric strain tensor
- Equation of state for hydrodynamic pressure has to be prescribed via the /EOS card.
- In case of a linear material with a
volumetric dilatation:
C1=E3(1−2ν) and C4=ανC1ρCνT
C4=C5=γ−1 and C0=C2=C3=0
then:(1) p=C1μ+(C4+C5μ)E=C1μ+C4(1+μ)E=C1μ+C4(1+μ)ρ0e=C1μ+C4(1+μ)ρ0CνT(2) p=C1μ+C4ρCνT=C1μ+ανTIf p=cst=0 , then C1μ+ανT=0 l=; so μ=ανTC1
Where,- μ
- Dilatation coefficient
- μ<0
- Dilatation
- All thermal data ( ρ0Cp,T0,A, and B ) can be defined with keyword /HEAT/MAT.
- If using LAW6 coupled with LAW37 for
liquid phase (without gas phase), the
compatibility of the liquid EOS is:
- ΔP1=C1μ for /MAT/LAW37 (BIPHAS)
- p=C0+C1μ+C2μ2+C3μ3+(C4+C5μ)E for LAW6 via a polynomial EOS defined as in the Example above.
with C0=C2=C3=C4=C5=E=0
then, p=C1μ
- If using LAW6 coupled with LAW37 for gas
phase (without liquid phase), the compatibility of
the gas EOS is:
- PVγ=const. for LAW37
- p=(γ−1)(μ+1)E for LAW6, via the /EOS/IDEAL-GAS equation of state.
Where, E is the energy per unit volume.