Processing math: 100%

/MAT/LAW6 (HYDRO or HYD_VISC)

Block Format Keyword Describes a fluid material. Pressure is computed using Equation of State provided by definition of /EOS option.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID or /MAT/HYD_VISC/mat_ID/unit_ID
mat_title
ρi ρ0            
ν Pmin            

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
ρ0 Reference density used in E.O.S (equation of state).

Default = ρ0=ρi (Real)

[kgm3]
ν Kinematic viscosity.

(Real)

[m2s]
Pmin Pressure cut-off.

Default = -1.0 x 1020 (Real)

[Pa]

Example (Air)

Comments

  1. Sij=2ρνeq˙eij
    Where,
    νeq=ν
    No turbulence
    Sij
    Deviatoric stress tensor
    ˙eij
    Deviatoric strain tensor
  2. Equation of state for hydrodynamic pressure has to be prescribed via the /EOS card.
  3. In case of a linear material with a volumetric dilatation:

    C1=E3(12ν) and C4=ανC1ρCνT

    C4=C5=γ1 and C0=C2=C3=0

    then:(1)
    p=C1μ+(C4+C5μ)E=C1μ+C4(1+μ)E=C1μ+C4(1+μ)ρ0e=C1μ+C4(1+μ)ρ0CνT
    (2)
    p=C1μ+C4ρCνT=C1μ+ανT

    If p=cst=0 , then C1μ+ανT=0 l=; so μ=ανTC1

    Where,
    μ
    Dilatation coefficient
    μ<0
    Dilatation
    In this case the parameters C2 and C3 will not be taken into account.
  4. All thermal data ( ρ0Cp,T0,A,andB ) can be defined with keyword /HEAT/MAT.
  5. If using LAW6 coupled with LAW37 for liquid phase (without gas phase), the compatibility of the liquid EOS is:
    • ΔP1=C1μ for /MAT/LAW37 (BIPHAS)
    • p=C0+C1μ+C2μ2+C3μ3+(C4+C5μ)E for LAW6 via a polynomial EOS defined as in the Example above.

    with C0=C2=C3=C4=C5=E=0

    then, p=C1μ

  6. If using LAW6 coupled with LAW37 for gas phase (without liquid phase), the compatibility of the gas EOS is:
    • PVγ=const. for LAW37
    • p=(γ1)(μ+1)E for LAW6, via the /EOS/IDEAL-GAS equation of state.

    Where, E is the energy per unit volume.