The stability conditions of explicit scheme in SPH formulation can be written over cells
or on nodes.
Cell Time Step
In case of cell stability computation (when no nodal time step is used), the stable time step is
computed as:
(1)
Δt=Δtsca⋅mini⎛⎜
⎜
⎜⎝dici(αi+√α2i+1)⎞⎟
⎟
⎟⎠,withαi=(qb+qa⋅¯¯μi⋅dici),and¯¯μi=maxj(μij)
Δtsca
is the user-defined coefficient (Radioss option /DT or /DT/SPHCEL). The value of
ΔTsca
=0.3 is recommended. 1
Nodal Time Step
In case
of nodal time step, stability time step is computed in a more robust way:
(2)
Δti=√2miKi
at particle
i
Use the following notations, if kernel correction:
(3)
Wj(i)=ˆW(xi−xj′di+dj2)and∇Wj(i)=grad|xi[ˆW(x−xj′di+dj2)]
Or, if no kernel correction:
(4)
Wj(i)=W(xi−xj′di+dj2)and∇Wj(i)=grad|xi[W(x−xj′di+dj2)]
Recalling that apart from the artificial viscosity
terms:
(5)
Fi=∑jFij,Fij=ViVj[pi∇Wj(i)−pj∇Wj(j)]
write
(6)
∣∣Kij∣∣=∥∥∥dFijd(ui−uj)∥∥∥≤dd(ui−uj)(ViVj[pi∥∇Wj(i)∥+pj∥∇Wi(j)∥])
Where,
ui−uj
is the relative displacement of particles
i
and
j
. Keeping the only first order terms leads to:
(7)
∣∣Kij∣∣≤ViVj[dpid(ui−uj)∥∇Wj(i)∥+dpjd(ui−uj)∥∇Wi(j)∥]
Where,
(8)
ViVjdpid(ui−uj)∥∇Wj(i)∥=ViVjdpidρi⋅dρid(ui−uj)∥∇Wj(i)∥=ViVjc2idρid(ui−uj)∥∇Wj(i)∥
that is
(9)
ViVjdpid(ui−uj)∥∇Wj(i)∥=mic2i˙V2j∥∇Wj(i)∥2
Same reasoning leads to:
(10)
ViVjdpjd(ui−uj)∥∇Wi(j)∥=mjc2j˙V2i∥∇Wi(j)∥2
So that
(11)
∣∣Kij∣∣≤mic2i˙V2j∥∇Wj(i)∥2+mjc2j˙V2i∥∇Wi(j)∥2
Stiffness around node
i
is then estimated as:
(12)
|Ki|≤∑j∣∣Kij∣∣
1
Monaghan J.J., “Smoothed Particle Hydrodynamics”,
Annu.Rev.Astron.Astro-phys; Vol. 30; pp. 543-574, 1992.