Time Step Control Stability

The stability conditions of explicit scheme in SPH formulation can be written over cells or on nodes.

Cell Time Step

In case of cell stability computation (when no nodal time step is used), the stable time step is computed as:(1)
Δt=Δtscamini(dici(αi+αi2+1)),withαi=(qb+qaμ¯idici),andμ¯i=maxj(μij)

Δtsca is the user-defined coefficient (Radioss option /DT or /DT/SPHCEL). The value of ΔTsca =0.3 is recommended. 1

Nodal Time Step

In case of nodal time step, stability time step is computed in a more robust way:(2)

Δti=2miKi at particle i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@

Use the following notations, if kernel correction:(3)
Wj(i)=W^(xixjdi+dj2)andWj(i)=grad|xi[W^(xxjdi+dj2)]
Or, if no kernel correction:(4)
Wj(i)=W(xixjdi+dj2)andWj(i)=grad|xi[W(xxjdi+dj2)]
Recalling that apart from the artificial viscosity terms:(5)
Fi=jFij,Fij=ViVj[piWj(i)pjWj(j)]
write (6)
|Kij|=dFijd(uiuj)dd(uiuj)(ViVj[piWj(i)+pjWi(j)])
Where, uiuj is the relative displacement of particles i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ and j MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ . Keeping the only first order terms leads to:(7)
|Kij|ViVj[dpid(uiuj)Wj(i)+dpjd(uiuj)Wi(j)]
Where, (8)
ViVjdpid(uiuj)Wj(i)=ViVjdpidρidρid(uiuj)Wj(i)=ViVjci2dρid(uiuj)Wj(i)
that is(9)
ViVjdpid(uiuj)Wj(i)=mici2V˙j2Wj(i)2
Same reasoning leads to:(10)
ViVjdpjd(uiuj)Wi(j)=mjcj2V˙i2Wi(j)2
So that (11)
|Kij|mici2V˙j2Wj(i)2+mjcj2V˙i2Wi(j)2
Stiffness around node i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ is then estimated as:(12)
|Ki|j|Kij|
1
Monaghan J.J., “Smoothed Particle Hydrodynamics”, Annu.Rev.Astron.Astro-phys; Vol. 30; pp. 543-574, 1992.