QUISPL
Returns the interpolated value or n-th derivative of the interpolated value of the Reference_Spline element.
Format
QUISPL(x, z, id) or QUISPL(x, 0, id, n)Arguments
- x
- The independent variable of the curve.
- z
- The independent variable z of the surface. Use z = 0 if only one curve is being defined.
- id
- The ID of the Reference_Spline element.
- n
- The order of the derivative desired. Not applicable with surfaces. Must lie between 0 and 2.
Example
<Force_Scalar_TwoBody
id = "301001"
type = "Force"
i_marker_id = "10506"
body1_id = "105"
j_marker_id = "10706"
body2_id = "107"
val_expression = "QUISPL(DM(10503,10703),0,301002)"
/>
<Reference_Spline
id = "301002"
num_xy_pair = "5"
linear_extrap = "FALSE">
0.0000000E+00 -2.2000000E+02
2.0000000E+02 -2.2000000E+02
2.3000000E+02 -2.2000000E+02
3.7322400E+02 -1.1000000E+02
5.0000000E+02 -0.1000000E+02
5.1000000E+02 -1.2000000E+02
6.0000000E+02 -1.3300000E+02
</Reference_Spline>
Comments
- QUISPL is based on a fifth order spline interpolation and produces smoother results compared to AKISPL and CUBSPL.
- Algorithm details can be found in "Algorithm 507: Procedures for Quintic Natural Spline Interpolation", John G. Herriot and Christian H. Reinsch, ACM Transactions on Mathematical Software, Vol 2, No 3, September 1976, Pages 281-289.