/MAT/LAW116

Block Format Keyword Describes mixed mode, strain rate dependent material model with damage and failure.

This material is only compatible with solid hexahedron elements (/BRICK) and the cohesive solid property (/PROP/TYPE43 (CONNECT)).
Note: Not compatible with any failure model. All damage and failure are defined inside of the material directly.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW116/mat_ID/unit_ID
mat_title
ρ i                
E I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ E II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ Thick Imass Idel Icrit  
G C I _ i n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ G C I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ ε ˙ G I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbaabeaaaSqabaaaaa@39A4@ f G I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaaqabaaaaa@38A8@    
G C II_ini MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ G C I I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ ε ˙ G II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbGaamysaaqabaaaleqa aaaa@3A72@ f G II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@    
σ A_I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ σ B _ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ ε ˙ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaaqabaaaaa@38A0@ Iorder_I Ifail_I    
σ A_II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ σ B _ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ ε ˙ II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@396E@ Iorder_II Ifail_II    

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Optional unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
E I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ Young’s (stiffness) modulus in normal direction per unit length.

(Real)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
E II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ Shear (stiffness) modulus in tangent direction per unit length.

Default = E I I = E I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbGaamysaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaa dMeaaeqaaaaa@3B5C@ (Real)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
Thick Reference cohesive thickness.

(Real)

[ m ]
Imass Mass calculation flag.
= 1 (Default)
Element mass is calculated using density and mean area.
= 2
Element mass is calculated using density and volume.

(Integer)

Idel Failure flag indicating the number of integration points to delete the element (between 1 and 4).

Default = 1 (Integer)

Icrit Yield and damage initiation flag.
= 1 (Default)
Based on quadratic nominal stress.
= 2
Based on maximum nominal stress.

(Integer)

G C I _ i n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ Initial critical energy release rate for mode I (normal direction).

(Real)

[ J ]
G C I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ Upper bound of critical energy release rate. Indicates the strain rate dependency of G C I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaaqabaaaaa@3884@ .

Default = 0.0 (Real)

[ J ]
ε ˙ G I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbaabeaaaSqabaaaaa@39A4@ Reference (lower bound) strain rate for GC strain rate dependency.

Must be defined if G C I _ i n f > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadAgaaeqaaOGa eyOpa4JaaGimaaaa@3DFF@ .

(Real)

[Hz]
f G I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaaqabaaaaa@38A8@ Shape factor for energy release rate before failure in mode I.

(Real)

G C I I _ i n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ Initial critical energy release rate for mode II (shear).

(Real)

[ J ]
G C I I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ Upper bound of critical energy release rate. Indicates the strain rate dependency of G C II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3952@ .

Default = 0.0 (Real)

[ J ]
ε ˙ G I I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbGaamysaaqabaaaleqa aaaa@3A72@ Reference (lower bound) strain rate for GC strain rate dependency.

Must be defined if G C I I _ i n f > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGMbaa beaakiabg6da+iaaicdaaaa@3ECD@ .

(Real)

[Hz]
f G I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@ Shape factor for energy release rate before failure in mode II.

(Real)

σ A _ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ Static yield stress in mode I.

(Real)

[ Pa ]
σ B _ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ Strain rate dependent yield stress term in mode I.

(Real)

[ Pa ]
ε ˙ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaaqabaaaaa@38A0@ Reference (lower bound) strain rate value for yield stress rate dependency in mode I.

Must be defined σ B _ I > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkeacaGGFbGaamysaaqabaGccqGH+aGpcaaIWaaaaa@3C29@ .

(Real)

[Hz]
Iorder_I Order of yield stress dependency on strain rate in mode I.
= 1 (Default)
Linear logarithmic dependency of strain rate.
= 2
Quadratic logarithmic dependency of strain rate.

(Integer)

 
Ifail_I Failure criteria defined by f G I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaaqabaaaaa@38A8@ :
= 1 (Default)
Ratio of fracture energy.
= 2
Ratio of fracture displacements.

(Integer)

 
σ A _ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ Static yield stress in mode II.

(Real)

[ Pa ]
σ B _ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ Strain rate dependent yield stress term in mode II.

(Real)

[ Pa ]
ε ˙ I I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@396E@ Reference (lower bound) strain rate value for yield stress rate dependency in mode II.

Must be defined if σ B _ I I > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkeacaGGFbGaamysaiaadMeaaeqaaOGaeyOpa4JaaGim aaaa@3CF8@ .

(Real)

[Hz]
Iorder_II Order of yield stress dependency of strain rate in mode II.
= 1 (Default)
Linear logarithmic dependency of strain rate.
= 2
Quadratic logarithmic dependency of strain rate.

(Integer)

Ifail_II Failure criteria defined by f G II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@ :
= 1 (Default)
Ratio of fracture energy.
= 2
Ratio of fracture displacements.

(Integer)

Example

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW116/3/1
MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE
#              RHO_I
              1.2E-9
#                 E1                  E2               Thick     Imass      Idel    Icrit  
                3000                1000               0.200         2         1        0
#            GC1_INI             GC1_INF              SRATG1                 FG1
               2.000               3.000               1.500                 0.7
#            GC2_INI             GC2_INF              SRATG2                 FG2
                9.00                   0                   0                 0.4
#              SIGA1               SIGB1              SRATE1   Iorder1    Ifail1
               33.00               1.500          2.50000E-5         1         2
#              SIGA2               SIGB2              SRATE2   Iorder2    Ifail2
               26.00               1.300          1.00000E-5         1         2
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata

Comments

  1. The elastic stiffness is defined with:


    Figure 1.
    Where,
    GP
    Plastic energy under constant stress
    GC
    Total energy
    i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}
    The mode I (normal) and mode II (shear)
    The shape of the traction separation law is defined with:
    • Failure criteria defined by ratio of fracture energy (Ifail_i=1)(1)
      0 f G i = G C i ( ε ˙ e q ) G C i ( ε ˙ e q ) < 1 σ ( ε ˙ e q ) 2 2 G C i ( ε ˙ e q ) E i < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaa aeaacaWGhbGaam4qamaaBaaaleaacaWGPbaabeaakiaacIcacuaH1o qzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaGccaGGPaaabaGaam4r aiaadoeadaWgaaWcbaGaamyAaaqabaGccaGGOaGafqyTduMbaiaada WgaaWcbaGaamyzaiaadghaaeqaaOGaaiykaaaacqGH8aapcaaIXaGa eyOeI0YaaSaaaeaacqaHdpWCdaqadaqaaiqbew7aLzaacaWaaSbaaS qaaiaadwgacaWGXbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaOqaaiaaikdacaWGhbGaam4qamaaBaaaleaacaWGPbaabe aakiaacIcacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaGc caGGPaGaamyramaaBaaaleaacaWGPbaabeaaaaGccqGH8aapcaaIXa aaaa@6305@
    • Failure criteria defined by ratio fracture displacements (Ifail_i=2)(2)
      0f G i = δ i2 δ i1 δ if δ i1 <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaa aeaacqaH0oazdaWgaaWcbaGaamyAaiaaikdaaeqaaOGaeyOeI0Iaeq iTdq2aaSbaaSqaaiaadMgacaaIXaaabeaaaOqaaiabes7aKnaaBaaa leaacaWGPbGaamOzaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaam yAaiaaigdaaeqaaaaakiabgYda8iaaigdaaaa@4E30@
  2. The yield stress is defined as:
    • When Iorder_i=1:(3)
      σ ( ε ˙ e q ) = σ A _ i + σ B _ i . [ max ( 0 , ln ( ε ˙ e q ε ˙ i ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae WaaeaacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaaakiaa wIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcbaGaamyqaiaac+faca WGPbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGcbGaai4xaiaa dMgaaeqaaOGaaiOlamaadmaabaGaciyBaiaacggacaGG4bWaaeWaae aacaaIWaGaaiilaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew7a LzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOqaaiqbew7aLzaaca WaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaGaay5waiaaw2faaaaa@5A93@
    • When Iorder_i=2:(4)
      σ ( ε ˙ e q ) = σ A _ i + σ B _ i . [ max ( 0 , ln ( ε ˙ e q ε ˙ i ) ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae WaaeaacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaaakiaa wIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcbaGaamyqaiaac+faca WGPbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGcbGaai4xaiaa dMgaaeqaaOGaaiOlamaadmaabaGaciyBaiaacggacaGG4bWaaeWaae aacaaIWaGaaiilaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew7a LzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOqaaiqbew7aLzaaca WaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaa@5B7C@

      Where, i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}, the mode I and mode II.

  3. The equivalent strain rate is defined with:(5)
    ε ˙ eq = Δ ˙ 2 I + Δ ˙ 2 II Thick MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaaaeaadaGc aaqaaiqbfs5aezaacaWaaWbaaSqabeaacaaIYaaaaOWaaSbaaSqaai aadMeaaeqaaOGaey4kaSIafuiLdqKbaiaadaahaaWcbeqaaiaaikda aaGcdaWgaaWcbaGaamysaiaadMeaaeqaaaqabaaakeaacaWGubGaam iAaiaadMgacaWGJbGaam4Aaaaaaaa@47EA@
    Where,
    Δ ˙ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aadaWgaaWcbaGaamysaaqabaaaaa@385F@
    Normal velocity.
    Δ ˙ II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@392D@
    Shear velocity.
  4. The rate dependent fracture energies are defined with:(6)
    G C i ( ε ˙ eq )=G C i_ini +( G C i_inf G C i_ini ).exp( ε ˙ G i ε ˙ eq ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamyAaaqabaGccaGGOaGafqyTduMbaiaadaWgaaWc baGaamyzaiaadghaaeqaaOGaaiykaiabg2da9iaadEeacaWGdbWaaS baaSqaaiaadMgacaGGFbGaamyAaiaad6gacaWGPbaabeaakiabgUca RmaabmaabaGaam4raiaadoeadaWgaaWcbaGaamyAaiaac+faciGGPb GaaiOBaiaacAgaaeqaaOGaeyOeI0Iaam4raiaadoeadaWgaaWcbaGa amyAaiaac+facaWGPbGaamOBaiaadMgaaeqaaaGccaGLOaGaayzkaa GaaiOlaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa cuaH1oqzgaGaamaaBaaaleaacaWGhbWaaSbaaWqaaiaadMgaaeqaaa WcbeaaaOqaaiqbew7aLzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaa aaaakiaawIcacaGLPaaaaaa@6316@

    Where, i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}, the mode I and mode II.

  5. Yield stress and damage law scheme:


    Figure 2.
  6. For yield and damage based on quadratic nominal stress (Icrit=1):
    • Mixed-mode yield initiation displacement is:(7)
      δ m1 = δ I1 δ II1 . 1+ β 2 δ II1 2 + (β. δ I1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGymaaqabaGccqaH0oazdaWgaaWcbaGaamysaiaadMeaca aIXaaabeaakiaac6cadaGcaaqaamaalaaabaGaaGymaiabgUcaRiab ek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaaca WGjbGaamysaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaiikaiabek7a Ijaac6cacqaH0oazdaWgaaWcbaGaamysaiaaigdaaeqaaOGaaiykam aaCaaaleqabaGaaGOmaaaaaaaabeaaaaa@54E7@
      Where,
      δ i1 = σ i E i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMgacaaIXaaabeaakiabg2da9maalaaabaGaeq4Wdm3a aSbaaSqaaiaadMgaaeqaaaGcbaGaamyramaaBaaaleaacaWGPbaabe aaaaaaaa@3F5B@
      i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}, the mode I and mode II.
      β= Δ II Δ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamysaiaadMeaaeqaaaGc baGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaaaaa@3E45@
    • Mixed-mode damage initiation is:(8)
      δ m2 = δ I2 δ II2 . 1+ β 2 δ II2 2 + (β. δ I2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGOmaaqabaGccqaH0oazdaWgaaWcbaGaamysaiaadMeaca aIYaaabeaakiaac6cadaGcaaqaamaalaaabaGaaGymaiabgUcaRiab ek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaaca WGjbGaamysaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaiikaiabek7a Ijaac6cacqaH0oazdaWgaaWcbaGaamysaiaaikdaaeqaaOGaaiykam aaCaaaleqabaGaaGOmaaaaaaaabeaaaaa@54EC@
      Where,
      δ i 2 = δ i 1 + f G i . G C i σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMgacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGPbGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadAgacaWGhbWaaS baaSqaaiaadMgaaeqaaOGaaiOlaiaadEeacaWGdbWaaSbaaSqaaiaa dMgaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaaaaaaa@4819@
      i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}, the mode I and mode II.
  7. For yield and damage based on quadratic nominal stress (Icrit=2).
    • Mixed-mode yield initiation displacement is:
      If β δ II1 δ I1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey izIm6aaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaaaaaaa@40E8@ :(9)
      δ m1 = δ I1 . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGymaaqabaGccaGGUaWaaOaaaeaacaaIXaGaey4kaSIaeq OSdi2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@42D1@
      If β> δ II1 δ I1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey Opa4ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaaaaaaa@403B@ :(10)
      δ m1 = δ II1 β . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIXaaabeaakiabg2da9maalaaabaGaeqiTdq2a aSbaaSqaaiaadMeacaWGjbGaaGymaaqabaaakeaacqaHYoGyaaGaai OlamaakaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOm aaaaaeqaaaaa@4550@
      Where,
      β= Δ II Δ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamysaiaadMeaaeqaaaGc baGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaaaaa@3E45@
      Δ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMeaaeqaaaaa@3857@
      Displacement is mode I (normal).
      Δ II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMeacaWGjbaabeaaaaa@3925@
      Displacement is mode II (shear).
    • Mixed-mode damage initiation is:
      If β δ II2 δ I2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey izIm6aaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaaaaaaa@40EA@ :(11)
      δ m2 = δ I2 . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGOmaaqabaGccaGGUaWaaOaaaeaacaaIXaGaey4kaSIaeq OSdi2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@42D3@
      If β> δ II2 δ I2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey Opa4ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaaaaaaa@403D@ :(12)
      δ m2 = δ II2 β . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIYaaabeaakiabg2da9maalaaabaGaeqiTdq2a aSbaaSqaaiaadMeacaWGjbGaaGOmaaqabaaakeaacqaHYoGyaaGaai OlamaakaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOm aaaaaeqaaaaa@4552@
  8. The mixed-mode final damage is (Icrit=1,2):(13)
    δ mf = δ m1 .( δ m1 δ m2 ) E I G C II cos 2 γ+G C I .( 2G C II + δ m1 .( δ m1 δ m2 ) E II sin 2 γ ) δ m1 ( E I G C II cos 2 γ+ E II G C I sin 2 γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaWGMbaabeaakiabg2da9maalaaabaGaeqiTdq2a aSbaaSqaaiaad2gacaaIXaaabeaakiaac6cadaqadaqaaiabes7aKn aaBaaaleaacaWGTbGaaGymaaqabaGccqGHsislcqaH0oazdaWgaaWc baGaamyBaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamyramaaBaaale aacaWGjbaabeaakiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjbaa beaakiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeo 7aNjabgUcaRiaadEeacaWGdbWaaSbaaSqaaiaadMeaaeqaaOGaaiOl amaabmaabaGaaGOmaiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjb aabeaakiabgUcaRiabes7aKnaaBaaaleaacaWGTbGaaGymaaqabaGc caGGUaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyBaiaaigdaaeqaaO GaeyOeI0IaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaaaOGaayjk aiaawMcaaiaadweadaWgaaWcbaGaamysaiaadMeaaeqaaOGaci4Cai aacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeq4SdCgacaGLOaGa ayzkaaaabaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakmaabm aabaGaamyramaaBaaaleaacaWGjbaabeaakiaadEeacaWGdbWaaSba aSqaaiaadMeacaWGjbaabeaakiGacogacaGGVbGaai4CamaaCaaale qabaGaaGOmaaaakiabeo7aNjabgUcaRiaadweadaWgaaWcbaGaamys aiaadMeaaeqaaOGaam4raiaadoeadaWgaaWcbaGaamysaaqabaGcci GGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaHZoWzaiaa wIcacaGLPaaaaaaaaa@8EE8@
    Where,
    γ=arccos( Δ I Δ m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0JaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaaiikamaa laaabaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaaaakiaacMcaaaa@449A@
    Δ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaaaa@387B@
    Displacement is mixed mode.
  9. The plastic strain is defined as:
    • Mode I:(14)
      Δ p I = max ( Δ p I ( t 1 ) , Δ p I δ m 1 cos γ , 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iCamaaBaaaleaacaWGjbaabeaakiabg2da9iGac2gacaGGHbGaaiiE amaabmaabaGaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaakmaabm aabaGaamiDaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGSaGaeuiL dqKaamiCamaaBaaaleaacaWGjbaabeaakiabgkHiTiabes7aKnaaBa aaleaacaWGTbGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaHZoWz caGGSaGaaGimaaGaayjkaiaawMcaaaaa@54AA@

      Where, ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3A21@ is the value from previous time step.

    • Mode II:

      If ( Δ I I 1 Δ p I I 1 ( t 1 ) ) 2 + ( Δ I I 2 Δ p I I 2 ( t 1 ) ) 2 > δ m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada qadaqaaiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigda aeqaaOGaeyOeI0IaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysai abgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGa ayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abgUcaRmaabmaabaGaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOe I0IaaGOmaaqabaGccqGHsislcqqHuoarcaWGWbWaaSbaaSqaaiaadM eacaWGjbGaeyOeI0IaaGOmaaqabaGcdaqadaqaaiaadshacqGHsisl caaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaqabaGccqGH+aGpcqaH0oazdaWgaaWcbaGaamyBaiaaigda aeqaaaaa@6000@

      The plastic strain is computed for each direction 1 and 2 in the shear plane.(15)
      Δ p I I 1 = Δ p I I 1 ( t 1 ) + Δ I I 1 Δ I I 1 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyyp a0JaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMca aiabgUcaRiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOGaeyOeI0IaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOe I0IaaGymaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOa Gaayzkaaaaaa@5689@
      (16)
      Δ p I I 2 = Δ p I I 2 ( t 1 ) + Δ I I 2 Δ I I 2 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyyp a0JaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMca aiabgUcaRiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOGaeyOeI0IaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOe I0IaaGymaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOa Gaayzkaaaaaa@5689@
  10. Stress value is reduced linearly from damage initiation to final damage ( Δ m > δ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaOGaeyOpa4JaeqiTdq2aaSbaaSqaaiaad2ga caaIYaaabeaaaaa@3D0C@ ).(17)
    D = max ( Δ m δ m 2 δ m f δ m 2 , D ( t 1 ) , 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iGac2gacaGGHbGaaiiEamaabmaabaWaaSaaaeaacqqHuoardaWg aaWcbaGaamyBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamyBai aaikdaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaWGMbaabeaa kiabgkHiTiabes7aKnaaBaaaleaacaWGTbGaaGOmaaqabaaaaOGaai ilaiaadseacaGGOaGaamiDaiabgkHiTiaaigdacaGGPaGaaiilaiaa icdaaiaawIcacaGLPaaaaaa@5242@

    The stress reduction is computed in the normal direction as:

    If Δ I > Δ p I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMeaaeqaaOGaeyOpa4JaeuiLdqKaamiCamaaBaaaleaa caWGjbaabeaaaaa@3CBD@ , then σ I = E I ( Δ I Δ p I ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeaaeqaaOGaeyypa0JaamyramaaBaaaleaacaWGjbaa beaakmaabmaabaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaOGaeyOeI0 IaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMca aaaa@43D1@ .

    otherwise, σ I = E I ( 1 D ) ( Δ I Δ p I ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeaaeqaaOGaeyypa0JaamyramaaBaaaleaacaWGjbaa beaakmaabmaabaGaaGymaiabgkHiTiaadseaaiaawIcacaGLPaaada qadaqaaiabfs5aenaaBaaaleaacaWGjbaabeaakiabgkHiTiabfs5a ejaadchadaWgaaWcbaGaamysaaqabaaakiaawIcacaGLPaaaaaa@47CB@ .

    For each direction 1 and 2 in the shear plane.(18)
    σ II1 = E II ( 1D )( Δ II1 Δ p II1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeacaWGjbGaeyOeI0IaaGymaaqabaGccqGH9aqpcaWG fbWaaSbaaSqaaiaadMeacaWGjbaabeaakmaabmaabaGaaGymaiabgk HiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaa caWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaaGccaGL OaGaayzkaaaaaa@4FFB@
    (19)
    σ II2 = E II ( 1D )( Δ II2 Δ p II2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeacaWGjbGaeyOeI0IaaGOmaaqabaGccqGH9aqpcaWG fbWaaSbaaSqaaiaadMeacaWGjbaabeaakmaabmaabaGaaGymaiabgk HiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaa caWGjbGaamysaiabgkHiTiaaikdaaeqaaOGaeyOeI0IaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaikdaaeqaaaGccaGL OaGaayzkaaaaaa@4FFE@
  11. The connection element is deleted when Δ m > δ mf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaOGaeyOpa4JaeqiTdq2aaSbaaSqaaiaad2ga caWGMbaabeaaaaa@3D3B@ .