/MAT/LAW117

Block Format Keyword This law represents the constitutive relation of ductile adhesive materials in 2 modes for normal and tangential directions. This law models the elastic and failure response of the material.

This material is only compatible with solid hexahedron elements (/BRICK) and the TYPE43 property (cohesive solid). This material is not compatible with any failure model. All damage and failure are defined inside of the material directly.


Figure 1. Representative scheme of the mixed mode model

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW117/mat_ID/unit_ID
mat_title
ρiρi                
EN ET Imass Idel Irupt      
Fct_TN Fct_TT TN TT Fscale_x  
GIC GIIC EXP_B EXP_BK Gamma

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρiρi Initial density.

(Real)

[kgm3][kgm3]
EN Stiffness normal to the plane of the cohesive element.

(Real)

[Pam][Pam]
ET Stiffness in the plane of the cohesive element.

(Real)

[Pam][Pam]
Imass Mass calculation flag.
= 1 (Default)
Element mass is calculated using density and mean area.
= 2
Element mass is calculated using density and volume.

(Integer)

 
Idel Failure flag indicating the number of integration points to delete the element (between 1 and 4).

Default = 1 (Integer)

 
Irupt Mixed mode displacement law flag.
= 1 (Default)
Power law
= 2
Benzeggage-Kenane

(Real)

 
Fct_TN Function identifier of the peak traction in normal direction versus element mesh size.

(Integer)

 
Fct_TT Function identifier of the peak traction in tangential direction versus element mesh size.

(Integer)

 
TN Peak traction in normal direction (default = 0)

or, Fct_TN ordinate scale factor (default = 1)

(Real)

[Pa][Pa]
TT Peak traction in tangential direction (default = 0)

or, Fct_TT ordinate scale factor (default = 1)

(Real)

[Pa][Pa]
Fscale_x Fct_TN and Fct_TT abscissa scale factor.

Default = 1 (Real)

[m][m]
GIC Energy release rate for mode I.

(Real)

[Pa.m][Pa.m]
GIIC Energy release rate for mode II.

(Real)

[Pa.m][Pa.m]
EXP_B Power law exponent for the mixed mode.

Default = 2 (Real)

EXP_BK Benzeggage-Kenane exponent for the mixed mode.

(Real)

Gamma Gamma exponent for Benzeggage-Kenane law.

Default = 1 (Real)

Example (Connect Material)

Comments

  1. Mode I refers to the normal direction and mode II refers to the shear direction. δIδI is the separation in normal direction equal to δzzδzz direction. δIIδII is equal to the separation in tangential direction δII=δyz+δzxδII=δyz+δzx . The mixed mode displacement is referred to by δmδm .
  2. The damage initiation displacement in mode I and mode II are respectively, δ0I=TNENδ0I=TNEN and δ0II=TTETδ0II=TTET and for the mixed mode:(1)
    δ0m=δ0Iδ0II1+β2(δ0II)2+(βδ0I)2δ0m=δ0Iδ0II 1+β2(δ0II)2+(βδ0I)2

    With the mode mix β=δIIδIβ=δIIδI .

  3. The maximum displacement at failure δFmδFm can be calculated using either a Power law for Irupt=1:(2)
    δFm=2(1+β2)δ0m[(ENGIC)EXP_B+(βETGIIC)EXP_B](1EXP_B)δFm=2(1+β2)δ0m[(ENGIC)EXP_B+(βETGIIC)EXP_B](1EXP_B)
    or, a Benzeggage-Kenane law for Irupt =2:(3)
    δFm=2δ0m(11+β2ENγ+β21+β2ETγ)1γ[GIC+(GIICGIC)(β2ETEN+β2ET)EXP_BK]δFm=2δ0m(11+β2ENγ+β21+β2ETγ)1γ[GIC+(GIICGIC)(β2ETEN+β2ET)EXP_BK]
  4. GIC and GIIC are the energy release rates between the peak traction and the maximum displacement for mode I and mode II, respectively.

    GIC=TNδFI2GIC=TNδFI2 and GIIC=TTδFII2GIIC=TTδFII2