Unit Consistency
In Radioss, data for any unit system can be provided, but it is very important to keep the unit consistency. If a model does not have unit consistency, it will lead to incorrect results (unexpected behavior) or may lead to an error in the calculation.
Basic Units
SI | CGS | Hydro | US | Japanese | |||
---|---|---|---|---|---|---|---|
Length | m | mm | mm | cm | cm | in | mm |
Mass | kg | Mg(Ton) | kg | g | g | lb | kg |
Time | s | s | ms | s | µs | s | ms |
Plane angle | rad | rad | rad | rad | rad | rad | rad |
Temperature | K | K | K | K | K | K | K |
Frequency | Hz | Hz | Hz | Hz | Hz | Hz | Hz |
Gravity | 9.81 | 9.81E+03 | 9.81E-03 | 9.81E+02 | 9.81E-10 | 386 | 9.81E-03 |
SI Unit Example
- SI Unit Example
- Length
- [m]
- Mass
- [kg]
- Time
- [s]
- Plane angle
- [rad]
- Temperature
- [K]
- Frequency
- [Hz]
- Rotational velocity
- [rads]
- Area
- [m2]
- Volume
- [m3]
- Moment of area (inertia)
- [m4]
- Consumption
- [m2]
- Speed
- [ms]
- Acceleration
- [ms2]
- Tension
- [ms2]
- Lineic mass
- [kgm]
- Surface mass
- [kgm2]
- Volume mass
- [kgm3]
- Mass flow
- [kgs]
- Volume flow
- [m3s]
- Quantity of movement
- [kg⋅ms]
- Kinetic moment
- [kg⋅ms]
- Moment of inertial (l)
- [kg⋅m2]
- Moment of force
- [N⋅m]
- Force
- [N]
- Linear force
- [Nm]
- Stiffness
- [Nm]
- Rotational stiffness
- [N•mrad]
- Rotational damping
- [N • m • srad]
- Torsion damping
- [kg⋅m2s⋅rad]
- Viscous damping
- [kgs]
- Damping for bending
- [N • sm]
- Quadratic bulk viscosity
- [Paλ⋅s]
- Dynamic viscosity
- [Pa⋅s]
- Kinematic viscosity
- [m2s]
- Density
- [kgm3]
- Power
- [W]
- Energy
- [J]
- Enthalpy
- [J]
- Entropy
- [JK]
- Strain rate
- [1s]
- Time relaxation
- [s]
- Thermal expansion
- [1K]
- Thermal conductivity
- [Wm⋅K]
- Thermal resistance
- [Wm2⋅K]
- Specific heat (Cp, Cv)
- [kgs2⋅m⋅K]
- Specific heat capacity (Cp)
- [Jm3⋅K]
Verify Consistency
Use basic units Mass, Length, or Time so you can get all other units you need.
Force=Mass⋅Acceleration=Mass⋅LengthTime2
Pressure=ForceArea=MassLength⋅Time2
Energy=Force⋅Length=Mass⋅Length2Time2
Density=MassVolume=MassLength3
Acceleration=LengthTime2
Volume=Length3
For example, using base unit [kg], [mm], or [ms], will provide the following units force, pressure or density.
Force=Mass⋅LengthTime2=[kg]⋅[mm][ms]2=103[kg]⋅[m][s]2=[kN]
Pressure=MassLength⋅Time2=[kg][mm]⋅[ms]2=109[kg][m]⋅[s]2=[GPa]
Energy=Mass⋅Length2Time2=[kg]⋅[mm]2[ms]2=[kg]⋅[m]2[s]2=[J]
Density=MassLength3=[kg][mm]2=106⋅[kg][m]2
Check Units
- Property Card
- Check the thickness unit in property if it is shell
- Material Card
- Check density unit
- Load
- Check force unit
- Length
- Measure the geometry length unit with HyperCrash or HyperMesh
All units must be consistent.
Most Popular Units (with steel examples)
Mass | Length | Time | Force | Energy | Stress | Density | Young's module | Gravity | Yield stress |
---|---|---|---|---|---|---|---|---|---|
kg | m | s | N | J | Pa | 7.8e+03 | 2.1e+11 | 9.81e+00 | 2.06e+05 |
g | mm | ms | N | mJ | MPa | 7.8e-03 | 2.1e+05 | 9.81e-03 | 2.06e+02 |
kg | mm | ms | KN | J | GPa | 7.8e-06 | 2.1e+02 | 9.81e-03 | 2.06e-01 |
Mg (ton) | mm | s | N | mJ | MPa | 7.8e-09 | 2.1e+05 | 9.81e+03 | 2.06e+02 |
g | cm | micros | 107N | 105J | Mbar | 7.8e+00 | 2.1e+00 | 9.81e-10 | 2.06e-06 |