View new features for Altair HyperWorks 2023.
Quick introduction to Altair HyperWorks products.
Discover the functionality of Altair HyperWorks products with interactive tutorials.
Administrative tools to customize your Altair HyperWorks installation.
The Altair License Utility is a tool allowing you to determine a host ID, check license usage, borrow licenses, and set up hosted Altair Units.
Altair Compute Console (ACC) is a utility that allows you to start different Altair HyperWorks Solvers.
Remote Job Submission in Altair Compute Console (ACC) is implemented as an alternative to a local run.
AbaqusODB UpGrade is a HyperView tool, which upgrades ODB files created in Abaqus 2018 (or earlier) to Abaqus 2023.
HgTrans translates solver results files from their native file format to Altair Binary Format (ABF). This can be done using the HgTrans GUI or via the HgTrans batch mode.
HvTrans is a result translator for HyperView that translates solver result files to .h3d files.
The HWTK GUI Toolkit is a resource tool for coding Tcl/Tk dialogs. It contains documentation of the HWTK GUI Toolkit commands, demo pages that illustrate our Altair GUI standards, and sample code for creating those examples.
The Cleanup Utility is a script for Windows that removes any custom settings that you may have due to the Altair applications installed.
The Model Identification Tool (MIT) is a profile in HyperGraph for fitting test data from frequency- and amplitude-dependent bushings to analytical models. The MIT operates in conjunction with HyperGraph, MotionView and MotionSolve to provide you with a comprehensive solution for modeling and analysis.
This section explains how to start the MIT interactively and in batch mode.
This section explains how to use the features in HWTK GUI Toolkit.
The Altair Bushing Model is a library of sophisticated, frequency- and amplitude-dependent bushing models that you can use for accurate vehicle dynamics, durability and NVH simulations. The Altair Bushing Model supports both rubber bushings and hydromounts.
This section provides information about using the Altair Bushing Model, also known as AutoBushFD, with MotionView. The Altair Bushing Model is a sophisticated model that you can use to simulate the behavior of bushings in vehicle dynamics, durability and NVH simulations.
This section provides information about using the Altair Bushing Model, also known as AutoBushFD, with MotionSolve.
The Altair Bushing Model includes Stiffness Force Models for Spline Stiffness, Constant Stiffness and Cubic Stiffness:
The Altair Bushing Model includes the following Damping Force Models:
This section provides information about the LuGre and Dahl formulations for friction.
The bodies connected by the bushing are flexible and may deflect under the load being transmitted. This phenomenon is modeled with the Mount Stiffness feature. Mount stiffness models the structural stiffness of the bodies, thus mounting the bushing as a linear spring and damper in series with the bushing in each direction.
The Altair Bushing Model includes a Mount Limits feature, which lets you model the material contact that occurs between the bodies that a bushing connects. The bodies are flexible and may deflect under the load being transmitted. Given enough bushing deflection, the bodies may contact one another for negative and positive deflections in each direction.
This section describes how preloads, offsets and scales enter into bushing force computations. You use Preloads, Offsets and Scales to alter the operating point of a bushing. You can offset the bushing displacement in any direction, and scale the input displacement and velocity. You can also offset the bushing force in any direction by adding a preload or scale-output force or moment in any direction.
Coupling refers to the forces and moments generated in a bushing to oppose the overall deformation of the bushing. These forces and moments are independent of any coordinate system that might be used to measure the deformation or deformation velocity. Coupling is an important factor when the bushing characteristics are non-linear.
The System Performance Data file, *.spd, contains the test data used for fitting a bushing. This data should be validated to ensure that it is physically meaningful. One test for physical consistency is that the dynamic stiffness at any amplitude of vibration must always be greater than the static stiffness at the same amplitude.
Register HVPcontrol registers the HVP ActiveX control for HyperView Player.
The HyperWorks Automation Toolkit (HWAT) is a collection of functions and widgets that allows an application to quickly assemble HyperWorks automations with minimal effort and maximum portability.
The H3D Validation Tools available are H3D Info and H3D Validate.
Use the Altair HyperWorks Products Uninstaller to remove all files from the installation directory.
Administrative tools to customize your Altair HyperWorks installation.
The Model Identification Tool (MIT) is a profile in HyperGraph for fitting test data from frequency- and amplitude-dependent bushings to analytical models. The MIT operates in conjunction with HyperGraph, MotionView and MotionSolve to provide you with a comprehensive solution for modeling and analysis.
This section provides information about using the Altair Bushing Model, also known as AutoBushFD, with MotionSolve.
The Altair Bushing Model includes the following Damping Force Models:
© 2023 Altair Engineering, Inc. All Rights Reserved.
Intellectual Property Rights Notice | Technical Support | Cookie Consent