/MAT/LAW103 (HENSEL-SPITTEL)

Block Format Keyword This law represents an isotropic elastic-plastic material at high temperature using Hensel-Spittel yield stress formula. The yield stress is a function of strain, strain rate and temperature. This material law can be used with an equation of state /EOS.

This material is often used in hot forging simulations. The law parameters are valid only for a given range of temperature and strain rate. This material law is compatible with solid and SPH elements only.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW103/mat_ID/unit_ID or /MAT/HENSEL-SPITTEL/mat_ID/unit_ID
mat_title
ρiρi ρ0ρ0            
E νν          
A0 m1 m2 m3 m4
m5 m7      
  Fsmooth Fcut ε0ε0 Pmin  
ρCpρCp T0 ηη        

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρiρi Initial density.

(Real)

[kgm3][kgm3]
ρ0ρ0 Reference density used in the default equation of state.

Default = ρiρi (Real)

[kgm3][kgm3]
E Initial Young's modulus.

(Real)

[Pa][Pa]
νν Poisson's ratio.

(Real)

 
A0 Stress parameter.

(Real)

[Pa][Pa]
m1 Material parameter 1.

(Real)

 
m2 Material parameter 2.

(Real)

 
m3 Material parameter 3.

(Real)

 
m4 Material parameter 4.

(Real)

 
m5 Material parameter 5.

(Real)

 
m7 Material parameter 7.

(Real)

 
Fsmooth Smooth strain rate flag.
=0
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering.

(Real)

[1s][1s]
ε0ε0 Reference strain.

(Real)

 
Pmin Pressure cutoff (< 0).

Default = 1030 (Real)

[Pa][Pa]
ρCpρCp Specific heat per unit volume.

(Real)

[Jm3K][Jm3K]
T0 Initial temperature.

(Real)

[K][K]
ηη Heat conversion parameter 0 < ηη < 1.0.

(Real)

 

Example (Alloy)

Comments

  1. Yield stress: 1(1)
    σy=A0expm1Tεm2˙εm3expm4ε(1+ε)m5Texpm7εσy=A0expm1Tεm2˙εm3expm4ε(1+ε)m5Texpm7ε
    Where,
    TT
    Temperature in °C
    εε
    True strain ε=ε0+ˉεpε=ε0+¯εp
    ˉεp¯εp
    Equivalent plastic strain
    ˙ε˙ε
    True strain rate in s-1
    m1m1 - m5m5
    Material parameters
  2. In case of purely mechanical simulation, the temperature is computed assuming adiabatic condition:(2)
    T=T0+ηEintρCpVT=T0+ηEintρCpV
    Where,
    Eint
    Internal energy of the element.
    ηη
    Taylor-Quinney coefficient used as scale of plastic energy, which transfers into heat.
    VV
    Volume of the element
  3. There is no strain rate effect if m3 = 0.
  4. By default, the hydrostatic pressure is linearly proportional to volumetric strain:(3)
    P=KμP=Kμ
    Where,
    K=E3(12v)K=E3(12v)
    Bulk modulus
    μ=ρρ01μ=ρρ01
    Volumetric strain

    An additional Equation of State (/EOS) card can refer to this material to model a nonlinear dependency between hydrostatic pressure and volumetric strain.

  5. This material can be used with the material options, /HEAT/MAT, /THERM_STRESS/MAT, /EOS, and /VISC.
1
A. Hensel, T. Spittel, VEB German Pushling House for Basic Industry, Leipzig, Deutschland, 1978