/MAT/LAW87 (BARLAT2000)
Block Format Keyword This elasto-plastic law is developed for anisotropic materials, especially aluminum alloys.
Yield stresses can be defined either by user-defined functions (plastic strain versus stress) or analytically by a combination of Swift-Voce model. The model is based on Barlat YLD2000 criterion. 1
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW87/mat_ID/unit_ID or /MAT/BARLAT2000/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E | Iflag | VP | c | p |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Ifit | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Ifit | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Chard |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Fcut | Fsmooth | Nrate | |||||||
Blank line |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDi | Fscalei |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
n | Fcut | Fsmooth | |||||||
A | Q | B | K0 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Am | Bm | Cm | Dm | Pm | |||||
Qm | mart | VM0 | |||||||
MHS | NHS | EPS0HS | |||||||
HMART | |||||||||
T0 | Cp | Eta |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
CRC1 | CRA1 | CRC2 | CRA2 | ||||||
CRC3 | CRA3 | CRC4 | CRA4 |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier (Integer, maximum 10 digits) |
|
mat_title | Material
title (Character, maximum 100 characters) |
|
Initial
density (Real) |
||
E | Young's
modulus (Real) |
|
Poisson's
ratio (Real) |
||
Iflag | Yield stress definition flag.
(Integer) |
|
VP | Strain rate choice flag.
4
(Integer) |
|
Ifit | Material parameter fit flag.
|
|
Barlat material parameters
with i=1~8. (Real) |
||
Yield strength in 00
direction (rolling direction). (Real) |
||
Yield strength in 45
direction. (Real) |
||
Yield strength in 90
direction. (Real) |
||
Yield strength biaxial
loading. (Real) |
||
Lankford r-value in 00
direction (rolling direction). (Real) |
||
Lankford r-value in 45
direction. (Real) |
||
Lankford r-value in 90
direction. (Real) |
||
Lankford r-value in
biaxial loading. (Real) |
||
Chard | Hardening coefficient.
|
|
a | Exponent in yield
function. 2 Default = 2 (Integer) |
|
Swift-Voce weighting
coefficient. 2
Default = 0.0 (Real) |
||
Q | Voce hardening
coefficient. (Real) |
|
K0 | Voce hardening
parameter. (Real) |
|
B | Voce plastic strain
coefficient. Default = 0.0 (Real) |
|
A | Swift hardening
coefficient. (Real) |
|
n | Swift hardening
exponent. Default = 1.0 (Real) |
|
Swift hardening
parameter. Default = 0.00 (Real) |
||
Fsmooth | Smooth strain rate option
flag when VP=0. 4
(Integer) |
|
Fcut | Cutoff frequency for
strain rate filtering, Appendix: Filtering. 7 Default = 10KHz (Real) |
|
c | Cowper-Seymonds reference
strain rate. (Real) |
|
p | Cowper-Seymonds strain
rate exponent. 5 (Real) |
|
Nrate | Number of yield functions.
2
(Integer) |
|
fct_IDi | Yield stress versus plastic strain
identifier. (Integer) |
|
Fscalei | Scale factor for ordinate for fct_IDi. Default = 1.0 (Real) |
|
Strain rate
i corresponding to fct_IDi.
Default = 1.0 (Real) 5 |
||
Am | Parameter A for martensite
rate equation. (Real) |
|
Bm | Parameter B for martensite
rate equation. (Real) |
|
Cm | Parameter C for martensite
rate equation. (Real) |
|
Dm | Parameter D for martensite
rate equation. (Real) |
|
Pm | Parameter P for martensite
rate equation. (Real) |
|
Qm | Parameter Q for martensite
rate equation. (Real) |
|
mart | Parameter
for martensite rate
equation. (Real) |
|
VM0 | Initial volume fraction
VM0 for martensite rate
equation. (Real) |
|
Parameter
in Hansel hardening
law. (Real) |
||
Parameter
in Hansel hardening
law. (Real) |
||
MHS | Coefficient
in Hansel hardening
law. (Real) |
|
NHS | Exponent
in Hansel hardening
law. (Real) |
|
EPS0HS | Reference strain
in Hansel hardening
law. (Real) |
|
HMART | Martensite coefficient in Hansel hardening law. | |
Temperature parameter
in Hansel hardening
law. (Real) |
||
Temperature parameter
in Hansel hardening
law. (Real) |
||
T0 | Initial
temperature. (Real) |
|
Cp | Specific heat per mass
unit. (Real) |
|
Eta | Taylor-Quinney
coefficient. (Real) |
|
CRCi | Chaboche Rousselier
kinematic parameter C i=1~4. (Real) 3 |
|
CRAi | Chaboche Rousselier
kinematic parameter A i=1~4. (Real) 3 |
Example 1 (with Barlat parameters input Iflag=0 and Ifit=0)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW87/1/1
Steel
# RHO_I
7.8E-6 0
# E Nu IFlag VP coeff_c exp_p
210 0.3 0 1 4.15401 3.57
# a1 a2 a3 a4 I_fit
1.0 1.0 1.0 1.0 0
# a5 a6 a7 a8
1.0 1.0 1.0 1.0
# Chard
0
# exp_a ALPHA NEXP Fcut Fsmooth NRATE
2 0 0 0 1 1
# Blank
# func_id YSCALE strain rate
4 1.5 1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/4
Steel
# X Y
0 .3
0.007 .5
0.05 .7
0.1 .75
0.3 .9
1 1.2
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Example 2 (with experiment data input Ifit=1)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
g mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW87/1/1
Aluminum
# RHO_I
2.7E-3 0
# E Nu IFlag VP coeff_c exp_p
70000 0.3 1 0 0 0
# sig00 sig45 sig90 sigb I_fit
133.179899 133.102756 132.330693 162.330301 1
# r00 r45 r90 rb
0.703242569 0.486264221 0.865336191 0.546807587
# Chard
0
# exp_a ALPHA NEXP Fcut Fsmooth
8 0.55 0.21 0 1
# ASwift Eps0 Qvoce Beta KO
415. 0.00220 174.7 11.19 132.4
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Example 3 (with Hansel yield model (Iflag=2) and kinematic hardening model (Chard=1))
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/BARLAT2000/2/1
Steel
# RHO_I
7.800E-6 0
# E Nu IFlag VP c P
210 .3 2 0 0 0
# a1 a2 a3 a4 I_fit
0.4865 1.3783 0.7536 1.0246 0
# a5 a6 a7 a8
1.0363 0.9036 1.2321 1.4858
# Chard
1
# exp_a
8
# AM BM CM DM PM
0.578 0.185 -6.78 0.02 7.54
# QM E0MART VM0
1379.0 0.01 0.1690
# AHS BHS MHS NHS EPS0HS
-0.261 9.170 0.118 0.401 0.0988
# HMART K1 K2
0.5490 3.95 -0.00681
# TEMP0 TREF CP ETA
300. 293. 460. 0.1
# CRC1 CRA1 CRC2 CRA2
80 0.052 0 0.
# CRC3 CRA3 CRC4 CRA4
0 0.0 0 0.
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The yield function is
expressed as:
(1) (2) (3) (4) and denote the principal values of the tensors and which are a linear transformation of the stress deviator, which leads to:(5) (6) The tensors and are linear transformations of the stress tensor:
(7) (8) - The yield stress could
be defined either by tabulated input or using the analytic Swift-Voce model.
- Iflag=0: Tabulated.
- It is possible to add total strain rate dependency by defining a number Nrate of functions.
- Iflag=1: The analytic Swift-Voce model is expressed
as:
(9) Where,- Equivalent plastic strain.
- Iflag=2: Hansel hardening model is
considered.
(10) Temperature is updated in the law when adiabatic conditions:(11) The martensite rate equation is computed as follows:(12)
- Iflag=0: Tabulated.
- If
Chard>0, a kinematic hardening model of Chaboche
Rousselier is used:
- The back stress is
calculated as:
(13) With,(14) - The yield stress is
computed as follows when combined isotropic kinematic hardening is
chosen:
(15)
- The back stress is
calculated as:
- The strain rate
filtering is available to smooth strain rates when tabulated input is
chosen.List of Animation output (in /ANIM/SHELL/USRII/JJ):
- USR 1= plastic strain
- USR 2= effective stress
- USR 3= increment of plastic strain
- When Iflag=1 (analytic Swift-Voce formulation is used) strain rates
effect is taken into account using Cowper-Symonds expression:
(16) If VP=0: is the total strain rate.
If VP=1: is the plastic strain rate.
If c=0 or p=0, the strain rate effects are not taken into account.
- When Iflag=0 (tabulated formulation) then:
If VP=0: is the total strain rate.
If VP =1: is the plastic strain rate.
- Strain rate
filtering:
If VP=0 (dependency on strain rate), the default value of Fcut = 10KHz.
If VP=1 (dependency on plastic strain rate), Fsmooth and Fcut are ignored.
- If Ifit=1, the coefficients will be automatically fit in the Radioss Starter. The tensile yield strengths and Lankford ratios must be determined from uniaxial tension experiments along the rolling, diagonal and transverse directions at an amount of plastic work corresponding to a plastic strain equal to 0.2%. and should be determined from biaxial test, for the same amount of plastic strain.