/MAT/LAW52 (GURSON)
Block Format Keyword This law is based on the Gurson constitutive law, which is used to model visco-elastic-plastic strain rate dependent porous metals.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW52/mat_ID/unit_ID or /MAT/GURSON/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρiρi | |||||||||
E | ν12ν12 | Iflag | Fsmooth | Fcut | Iyield | ||||
A | B | N | c | p | |||||
q1q1 | q2q2 | q3q3 | SN | εNεN | |||||
fI | fN | fc | fF |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Tab_ID | XFAC | YFAC |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
Unit Identifier | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
ρiρi | Initial density. (Real) |
[kgm3][kgm3] |
E | Young's modulus. (Real) |
[Pa][Pa] |
ν12ν12 | Poisson's ratio. (Real) |
|
Iflag | Viscoplastic flow flag. 1
(Integer) |
|
Fsmooth | Smooth strain rate are computed.
(Integer) |
|
Fcut | Cutoff frequency for strain rate
filtering. Default = 1030 (Real) |
[Hz][Hz] |
Iyield | Flag for computing the Yield stress.
3
(Integer) |
|
A | Yield stress. (Real) |
[Pa][Pa] |
B | Hardening
parameter. (Real) |
[Pa][Pa] |
N | Hardening exponent. (Real) |
|
c | Strain rate coefficient in
Cowper-Symond's law. (Real) |
[1s][1s] |
p | Strain rate exponent in Cowper-Symond's
law. (Real) |
|
q1q1 , q2q2 , q3q3 | Damage material
parameters. (Real) |
|
SN | Gaussian standard
deviation. (Real) |
[Pa][Pa] |
εNεN | Nucleated effective plastic
strain. (Real) |
|
fI | Initial void volume fraction. 2 (Real) |
|
fN | Nucleated void volume
fraction. (Real) |
|
fc | Critical void volume fraction at
coalescence. 2 (Real) |
|
fF | Critical void volume fraction at ductile
fracture. 2 (Real) |
|
Tab_ID | Yield stress table identifier
(stress-strain functions with correspond strain rate). (Integer) |
|
XFAC | Scale factor for the first entry
(plastic strain) in function which used for Tab_ID. Default = 1.0 (Real) |
|
YFAC | Scale factor for ordinate (Yield stress)
in function which used for Tab_ID. Default = 1.0 (Real) |
▸Example (with parameter input)
▸Example (with function input)
Comments
- The von
Mises criteria for viscoplastic flow:If Iflag = 0:
(1) Ωvm=σeq−σM√1+q3f*2−2q1f*2cosh(3q2σm2σM)Ωvm=σeq−σM√1+q3f*2−2q1f*2cosh(3q2σm2σM)If Iflag = 1:(2) Ωvm=σ2eqσ2M+2q1f*cosh(32q2σmσM)−(1+q3f∗2) Ωvm=σ2eqσ2M+2q1f∗cosh(32q2σmσM)−(1+q3f∗2)if σm>0σm>0
(3) Ωvm=σ2eqσ2M+2q1f∗−(1+q3f∗2)Ωvm=σ2eqσ2M+2q1f∗−(1+q3f∗2)if σm≤0σm≤0
Where, σMσM is the admissible stress, σmσm is the trace[ σσ ] (hydrostatic stress), σeqσeq is the von Mises stress, and q1q1 , q2q2 , and q3q3 are the material parameter for Gurson Law,
q3=q21q3=q21
f*f∗ is the specific coalescence function.
f*=ff∗=f if f≤fcf≤fc
f*=fc+fu−fcfF−fc(f−fc)f∗=fc+fu−fcfF−fc(f−fc) if f>fcf>fc
with
fu=1q1fu=1q1 corresponding to the coalescence function fu=f*(fF)fu=f∗(fF)
- The void volume fraction parameters must be entered so that, fI<fc<fFfI<fc<fF .
- If one integration point reaches f*≥fFf∗≥fF , the element is deleted.
- If the
Iyield flag is not activated
(Iyield=0), the yield
stress is computed using Cowper-Symond's law:
(4) σM=(A+BεMN)(1+(˙εc)1p)σM=(A+BεMN)(1+(˙εc)1/p)If the Iyield flag is activated (Iyield=1), the yield stress is computed directly from the Yield stress curves (Tab_ID).
- This law is available for shell and solid elements.
- In plot files (/TH/SHEL, /TH/SH3N and /TH/BRICK) or animation files
(/ANIM), the following variables are available:
- USR1: plastic strain εMεM
- USR2: f*
- USR3: admissible stress σM
- USR4: f
- USR5: ε