/MAT/LAW52 (GURSON)

Block Format Keyword This law is based on the Gurson constitutive law, which is used to model visco-elastic-plastic strain rate dependent porous metals.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW52/mat_ID/unit_ID or /MAT/GURSON/mat_ID/unit_ID
mat_title
ρiρi                
E ν12ν12 Iflag Fsmooth Fcut Iyield  
A B N c p
q1q1 q2q2 q3q3 SN εNεN
fI fN fc fF    
If Iyield > 0:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Tab_ID   XFAC YFAC        

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
Unit Identifier Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρiρi Initial density.

(Real)

[kgm3][kgm3]
E Young's modulus.

(Real)

[Pa][Pa]
ν12ν12 Poisson's ratio.

(Real)

 
Iflag Viscoplastic flow flag. 1
= 0
von Mises criteria.
= 1
von Mises criteria.
= 2
1 + void nucleation set to zero in compression
= 3
0 + void nucleation set to zero in compression.

(Integer)

 
Fsmooth Smooth strain rate are computed.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing is active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering.

Default = 1030 (Real)

[Hz][Hz]
Iyield Flag for computing the Yield stress. 3
= 0
Using Cowper-Symond's law.
= 1
Using Yield stress table (Yield stress versus plastic strain).

(Integer)

 
A Yield stress.

(Real)

[Pa][Pa]
B Hardening parameter.

(Real)

[Pa][Pa]
N Hardening exponent.

(Real)

 
c Strain rate coefficient in Cowper-Symond's law.

(Real)

[1s][1s]
p Strain rate exponent in Cowper-Symond's law.

(Real)

 
q1q1 , q2q2 , q3q3 Damage material parameters.

(Real)

 
SN Gaussian standard deviation.

(Real)

[Pa][Pa]
εNεN Nucleated effective plastic strain.

(Real)

 
fI Initial void volume fraction. 2

(Real)

 
fN Nucleated void volume fraction.

(Real)

 
fc Critical void volume fraction at coalescence. 2

(Real)

 
fF Critical void volume fraction at ductile fracture. 2

(Real)

 
Tab_ID Yield stress table identifier (stress-strain functions with correspond strain rate).

(Integer)

 
XFAC Scale factor for the first entry (plastic strain) in function which used for Tab_ID.

Default = 1.0 (Real)

 
YFAC Scale factor for ordinate (Yield stress) in function which used for Tab_ID.

Default = 1.0 (Real)

 

Example (with parameter input)

Example (with function input)

Comments

  1. The von Mises criteria for viscoplastic flow:
    If Iflag = 0:(1)
    Ωvm=σeqσM1+q3f*22q1f*2cosh(3q2σm2σM)Ωvm=σeqσM1+q3f*22q1f*2cosh(3q2σm2σM)
    If Iflag = 1:(2)
    Ωvm=σ2eqσ2M+2q1f*cosh(32q2σmσM)(1+q3f2)Ωvm=σ2eqσ2M+2q1fcosh(32q2σmσM)(1+q3f2)

    if σm>0σm>0

    (3)
    Ωvm=σ2eqσ2M+2q1f(1+q3f2)Ωvm=σ2eqσ2M+2q1f(1+q3f2)

    if σm0σm0

    Where, σMσM is the admissible stress, σmσm is the trace[ σσ ] (hydrostatic stress), σeqσeq is the von Mises stress, and q1q1 , q2q2 , and q3q3 are the material parameter for Gurson Law,

    q3=q21q3=q21

    f*f is the specific coalescence function.

    f*=ff=f if ffcffc

    f*=fc+fufcfFfc(ffc)f=fc+fufcfFfc(ffc) if f>fcf>fc

    with

    fu=1q1fu=1q1 corresponding to the coalescence function fu=f*(fF)fu=f(fF)

  2. The void volume fraction parameters must be entered so that, fI<fc<fFfI<fc<fF .
  3. If one integration point reaches f*fFffF , the element is deleted.
  4. If the Iyield flag is not activated (Iyield=0), the yield stress is computed using Cowper-Symond's law:
    (4)
    σM=(A+BεMN)(1+(˙εc)1p)σM=(A+BεMN)(1+(˙εc)1/p)

    If the Iyield flag is activated (Iyield=1), the yield stress is computed directly from the Yield stress curves (Tab_ID).

  5. This law is available for shell and solid elements.
  6. In plot files (/TH/SHEL, /TH/SH3N and /TH/BRICK) or animation files (/ANIM), the following variables are available:
    • USR1: plastic strain εMεM
    • USR2: f*
    • USR3: admissible stress σM
    • USR4: f
    • USR5: ε