View new features for Altair HyperWorks 2023.1.
Learn the basics and discover the workspace.
Learn more about the Altair HyperWorks suite of products with interactive tutorials.
Start and configure the applications.
View a list of deprecated panels and their newer, equivalent workflows.
Create, open, import, and save models.
Set up sessions and create report templates.
Solver interfaces supported in HyperMesh.
A solver interface is made up of a template and a FE-input reader.
Browsers provide a structured view of model data, which you can use to review, modify, create, and manage the contents of a model. In addition to visualization, browsers offer features like search, filtering, and sorting, which enhance your ability to navigate and interact with the model data.
Create and edit 2D parametric sketch geometry.
Create, edit, and cleanup geometry.
FE geometry is topology on top of mesh, meaning CAD and mesh exist as a single entity. The purpose of FE geometry is to add vertices, edges, surfaces, and solids on FE models which have no CAD geometry.
Explore the different types of mesh you can create in HyperMesh and create and edit 0D, 1D, 2D, and 3D elements.
Create, organize and manage parts and subsystems.
HyperMesh composites modeling.
Create connections between parts of your model.
Rapidly change the shape of the FE mesh without severely sacrificing the mesh quality.
Create a reduced ordered model to facilitate optimization at the concept phase.
Workflow to support topology optimization model build and setup.
Setup an Optimization in HyperMesh.
Multi-disciplinary design exploration and optimization tools.
Validate the model built before running solver analysis.
Models require loads and boundary conditions in order to represent the various physics and/or physical equivalents to bench and in-use testing.
Reduce a full 3D model with axisymmetric surfaces while accounting for imperfections.
Tools and workflows that are dedicated to rapidly creating new parts for specific use cases, or amending existing parts. The current capabilities are focused on stiffening parts.
Tools used for crash and safety analysis.
Use airbag folder utilities and export a resulting airbag in a Radioss deck.
Essential utility tools developed using HyperMesh-Tcl.
Import an aeroelastic finite element model with Nastran Bulk Data format.
Framework to plug certification methods to assess margin of safety from the model and result information.
Create and evaluate evaluation lines and optimize interfaces to eliminate squeak and rattle issues.
Use PhysicsAI to build fast predictive models from CAE data. PhysicsAI can be trained on data with any physics or remeshing and without design variables.
Results data can be post-processed using both HyperMesh and HyperView.
HyperGraph is a data analysis and plotting tool with interfaces to many file formats.
MotionView is a general pre-processor for Multibody Dynamics.
MotionView is a general pre-processor for Multibody Dynamics.
The Model Browser allows you to view the MotionView model structure while providing display and editing control of entities.
The MotionView ribbons allows you to quickly access tools and standard functions, and is located along the top of MotionView.
Create and edit systems, assemblies, and analyses, use wizards to build models quickly, create and edit belt/pullies, NLFE stabars, and NLFE springs, access the EDEM and Track Builder tools.
Create and edit points, bodies, lines (curve graphics), solids (graphics), markers and vectors, edit grounded/ungrounded bodies, create and edit rigid body groups, configure gravity, and select material properties.
Create and edit various model entities.
Use the Joints tool to create and edit joints.
Use the Motions tool to create motions and to edit the initial conditions, displacements, velocities, and acceleration of joints.
A Coupler entity defines an algebraic relationship between the degrees of freedom of two or three joints.
Use the Gears tool to create a gear entity to relate the motion of two joints.
Use the Advanced Joints tool to create and edit a set of special constraints called higher pair joints. Typically, these are constraints that involve a curve or surface on at least one of the two bodies.
A point to curve joint consists of a fixed point on one body sliding on a curve that is fixed on a second body. The point is not allowed to lift off the curve. The curve on the second body should be a 3D curve and needs to be specified using a MotionView curve (which is a reference entity).
The curve to curve constraint consists of a 3D curve fixed on one body rolling and sliding on a 3D curve fixed on a second body. The curves are required to have a unique point of contact and a common tangent at that point of contact. The curve-to-curve constraint is useful for modeling cams where the point of contact between two parts changes during the motion of the system. The curves always maintain contact, however, even when the physics of the model might dictate that one curve lift off the other.
A point to surface joint constrains a fixed point on a body to slide along a surface. The point to surface joint provides five degrees of freedom: three rotational at the instantaneous point of contact and two translational DOF.
The curve to surface joint provides five degrees of freedom: three rotational at the instantaneous point of contact and two translational DOF.
The surface to surface constraint consists of a surface on one body rolling and sliding on the surface of a second body. Each of the surfaces are required to have a unique contact point. The surface to surface joint constrains the two surfaces as follows: the surfaces have exactly one contact point, and the normal at the contact point for each is anti-parallel.
The point to deformable curve joint constrains a fixed point on a body to slide along a curve that passes through the origins of a specified set of markers. These markers may belong to different bodies. As the markers move in space, the curve is calculated at every time step using CUBIC spline interpolation through the marker origins. Hence, the curve deforms as the markers move about.
The point to deformable surface joint constrains a fixed point on a body to slide along a surface that passes through the origins of a specified set of markers. These markers may belong to different bodies. As the markers move in space, the surface is calculated at every time step using CUBIC spline interpolation through the marker origins. Hence, the surface deforms as the markers move about.
Constraint mates offer higher pair constraints in the form of distance, coincidence and tangency between two analytical geometries. The geometries could be point, line, sphere, cylinder, cone or a plane. The geometry is defined analytically using bodies and points.
Use the Spring Dampers tool to edit the connectivity, properties, and initial conditions of springs and dampers.
Use the Bushings tool to create bushings and edit their connectivity, properties, and orientation rules.
Use the Beams to create beams and edit their connectivity, properties, and orientations.
Use the PolyBeams tool to create polybeams and edit their points and properties.
Use the Forces tool to create forces and to edit the orientation and properties of forces.
Use the Contacts tool to specify the attributes of a contact force between two bodies.
The Contact Properties Editor macro enables you to edit multiple contact force entities in a model simultaneously.
Use the General Constraints tool to create a generic expression-based constraint.
Use the Fields tool to create a compliant connection between two bodies where stiffness or damping in one direction can be a function of displacement in another direction
The Modal Forces tool allows you to include a disturbed force on a flexible body that exists in the modal form in the flexible body H3D.
Use the Surfaces tool to create and edit surfaces.
Use the Curves tool to create and edit deformable curves.
Use the Surfaces and Surfaces from FEM tools to create and edit deformable surfaces.
Use the Spline2D/Curves tool to create and edit curves.
The Spline3D panel allows you to add and edit three dimensional spline data.
Use the Variables tool to create solver variables that can be used to create an algebraic expression of state variables, as well as other solver variables. This can then be referenced in function expressions throughout the solver input file.
Use the DataSets tool to create and edit datasets comprised of object types, such as real, string, boolean, integer, and options.
Use the Arrays tool to create solver arrays and set solver array data. Solver array types include X array, Y array, U array, IC array, Plant Input array, and Plant Output array.
Use the Strings tool to create a solver string and set solver string data. A solver string provides a string that can be accessed within the model, for example, to pass into a user subroutine.
Use the Sensors tool to sense an event during simulation and to define a response to that event
Use the SISOs tool to set control SISO data. This data can be used to add additional states to the mechanical system being modeled.
Use the FMU tool to add a Functional Mock-up Unit and connect it to a multibody model.
Use the State Equations tool to create and set control state equation data.
Use the Diff Equations tool to set solver differential equations. These equations can be used to add additional states to the mechanical system being modeled.
Use the Orientation tool to align an entity along a particular direction.
Create and edit outputs, create and edit templates, run the solver, view reports, access the Load Export utility, use the Optimization Wizard, open HyperStudy, utilize many pre-processing and post-processing capabilities with regards to flexible bodies (or flexbodies), run MS/EDEM cosimulation in batch mode, and generate H3D from EDEM.
MotionView supports the importing of several types of CAD and FE formats.
MotionView has many pre-processing and post-processing capabilities with regards to flexible bodies, or flexbodies, for multibody dynamics models.
Add an FMU to the model or export a model as an FMU.
Explore the various vehicle modeling tools.
Reference material for the scripting interface which is a set of Tcl/Tk commands.
Reference materials for the MotionView MDL Language, Tire Modeling, and the MDL Library.
Reference material detailing command statements, model statements, functions and the Subroutine Interface available in MotionSolve.
Reference material for Templex (a general purpose text and numeric processor) and additional mathematical functions and operators.
Reference materials for the MotionView Python Language.
MediaView plays video files, displays static images, tracks objects, and measures distances.
Use TableView to create an Excel-like spreadsheet.
TextView math scripts reference vector data from HyperGraph windows to automate data processing and data summary.
Create, define, and export reports.
Explore, organize and manage your personal data, collaborate in teams, and connect to other data sources, such as corporate PLM systems to access CAD data or publish simulation data.
MotionView is a general pre-processor for Multibody Dynamics.
The MotionView ribbons allows you to quickly access tools and standard functions, and is located along the top of MotionView.
Create and edit various model entities.
Use the Advanced Joints tool to create and edit a set of special constraints called higher pair joints. Typically, these are constraints that involve a curve or surface on at least one of the two bodies.
© 2023 Altair Engineering, Inc. All Rights Reserved.
Intellectual Property Rights Notice | Technical Support | Cookie Consent