View new features for Altair HyperWorks 2023.
Learn the basics and discover the workspace.
Learn more about the Altair HyperWorks suite of products with interactive tutorials.
Start and configure the applications.
View a list of deprecated panels and their newer, equivalent workflows.
Create, open, import, and save models.
Set up sessions and create report templates.
Solver interfaces supported in HyperMesh.
A solver interface is made up of a template and a FE-input reader.
Browsers provide a structured view of model data, which you can use to review, modify, create, and manage the contents of a model. In addition to visualization, browsers offer features like search, filtering, and sorting, which enhance your ability to navigate and interact with the model data.
Create and edit 2D parametric sketch geometry.
Create, edit, and cleanup geometry.
FE geometry is topology on top of mesh, meaning CAD and mesh exist as a single entity. The purpose of FE geometry is to add vertices, edges, surfaces, and solids on FE models which have no CAD geometry.
Explore the different types of mesh you can create in HyperMesh and create and edit 0D, 1D, 2D, and 3D elements.
Create, organize and manage parts and subsystems.
HyperMesh composites modeling.
Create connections between parts of your model.
Rapidly change the shape of the FE mesh without severely sacrificing the mesh quality.
Create a reduced ordered model to facilitate optimization at the concept phase.
Workflow to support topology optimization model build and setup.
Setup an Optimization in HyperMesh.
Multi-disciplinary design exploration and optimization tools.
Validate the model built before running solver analysis.
Models require loads and boundary conditions in order to represent the various physics and/or physical equivalents to bench and in-use testing.
Reduce a full 3D model with axisymmetric surfaces while accounting for imperfections.
Tools and workflows that are dedicated to rapidly creating new parts for specific use cases, or amending existing parts. The current capabilities are focused on stiffening parts.
Tools used for crash and safety analysis.
Use airbag folder utilities and export a resulting airbag in a Radioss deck.
Essential utility tools developed using HyperMesh-Tcl.
Import an aeroelastic finite element model with Nastran Bulk Data format.
Framework to plug certification methods to assess margin of safety from the model and result information.
Create and evaluate evaluation lines and optimize interfaces to eliminate squeak and rattle issues.
Use PhysicsAI to build fast predictive models from CAE data. PhysicsAI can be trained on data with any physics or remeshing and without design variables.
Results data can be post-processed using both HyperMesh and HyperView.
Direct integration of native results readers into HyperMesh allows you to perform results visualization on the model.
HyperView is a complete environment to visualize, query, and process results data.
Open animation files, measure various distances and angles between entities, and use the Results Browser to view the model structure and find, display, and edit entities.
Create section cuts and explore the various result plotting tools.
Create and edit user-defined data type expressions, derived load cases, and systems. You can also plot a forming limit diagram, generate streamlines, track entities during animation, and create and import/export sets of entities.
Query entities, create or edit free body diagrams, construct multiple curves and plots from a single result file, and create and plot stress linearization.
Annotate animation files using notes or trace various entities during animation.
Define planes of symmetry/axisymmetry or explode a model.
Select and overlay images or videos in the modeling window for correlation and presentation purposes.
Select a graphics rendering mode and change the appearance of materials.
The Tools menu provides you access to various panels and dialogs.
Use the Add Object tool to add a graphical representation as an object to a specific component (part) or modify an existing object.
Use the Deformed tool to specify parameters for deformation display.
Use the Collision Detection tool to perform collision interference checking.
Use the Systems Review dialog to review the orientations of various element systems (1D, 2D, or 3D), as well as material and ply systems.
The Mask panel allows you to mask elements, components, and systems to reduce the number of entities displayed on the screen. With fewer entities displayed on the screen, it is easier to pick the necessary elements or visualize important areas of a model.
Visual properties such as shading, color, and mesh lines can be assigned to entities using the Entity Attributes panel.
The Apply Style options dialog allows you to select and apply display attributes of the active model in the current window to all models available in the current window, the current page, all pages, or selected HyperView windows in the session.
The Extract Solver Deck Data tool allows you to import a HyperMesh exported input deck and extract the include hierarchy assembly information from the HyperMesh commands HMNAME, HMCOLOR, and HMASSEM.
The Generate PSM for MADYMO function allows you to save analysis results of nodes as a PSM (Prescribed Structural Motion) file. Displacement results from any animation can be exported as a PSM file.
A script for ANSYS result files, which allows you to extract total summation of nodal force and moments for the nodes of the selected elements.
The RAD2NOISE dialog in the utilities page allows you to create an input file based on your inputs. This input file can be used to run the RAD2NOISE solver in batch mode.
Use the Synchronize Animation dialog to synchronize windows that contain animation results in different units and/or begin at different time steps.
The Contour Measure Curves dialog allows you to quickly plot contour measure curves.
Synchronize and switch the subcase and simulation across multiple windows on the page.
The Tools menu Import option allows you to access sub-menu options and dialogs for plot styles, sets, and views.
The Tools menu Export option allows you to access sub-menu options and dialogs for iso surface, plot styles, sets, and views.
Load preference file profiles to access the various Aerospace tools, NVH utilities, and Vehicle Safety Tools.
From the Preferences dialog, you can access various HyperView display options.
Explore the various display and visualization tools.
A new workflow emphasizing the multicore profile for standard crash post processing use cases.
HyperGraph is a data analysis and plotting tool with interfaces to many file formats.
MotionView is a general pre-processor for Multibody Dynamics.
MediaView plays video files, displays static images, tracks objects, and measures distances.
Use TableView to create an Excel-like spreadsheet.
TextView math scripts reference vector data from HyperGraph windows to automate data processing and data summary.
Create, define, and export reports.
Explore, organize and manage your personal data, collaborate in teams, and connect to other data sources, such as corporate PLM systems to access CAD data or publish simulation data.
Results data can be post-processed using both HyperMesh and HyperView.
HyperView is a complete environment to visualize, query, and process results data.
The Tools menu provides you access to various panels and dialogs.
The Mask panel allows you to mask elements, components, and systems to reduce the number of entities displayed on the screen. With fewer entities displayed on the screen, it is easier to pick the necessary elements or visualize important areas of a model.
© 2023 Altair Engineering, Inc. All Rights Reserved.
Intellectual Property Rights Notice | Technical Support | Cookie Consent