Beam Failures

The Beam config has 2 subtypes: Beam_member and Beam_shell. The first is made of 1D elements while the second points to freebody sections. Both configs come with their flavor of the same actual methods:
  1. Stringer Axial Stress
  2. Stringer compressive buckling

The Stinger Axial Stress is a simple method which calculates the Compressive/Tensile margin of safety as:

MS= [(Compressive Stress limit)*(section Area)/(Axial Force)] -1; (resp. Tensile Stress limit)

In the case of freebody sections, Axial Force is mapped to the freebody resultant Fx.

The compressive buckling method evaluates MS=Fcc/σx1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadofacqGH9aqpcaWGgbWaaSbaaSqaaiaadogacaWGJbaabeaakiaac+cacqaHdpWCdaWgaaWcbaGaamiEaaqabaGccqGHsislcaaIXaaaaa@40C8@ with:
  • σx MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqaaaaa@38E2@ : average axial stress as (Axial Force)/(Section’s area)
  • Fcc=Fcy*(1.272(L'/ρ)/π*E/Fcy) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaWGJbGaam4yaaqabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadogacaWG5baabeaakiaacQcacaGGOaGaaGymaiabgkHiTiaac6cacaaIYaGaaG4naiaaikdacaGGOaGaamitaiaacEcacaGGVaGaeqyWdiNaaiykaiaac+cacqaHapaCcaGGQaWaaOaaaeaacaWGfbGaai4laiaadAeadaWgaaWcbaGaam4yaiaadMhaaeqaaaqabaGccaGGPaaaaa@5028@
  • Fcy MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaWGJbGaamyEaaqabaaaaa@38D3@ : material compressive stress limit
  • L'=(structuralpropertyLength)/K_constraint MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacEcacqGH9aqpcaGGOaGaae4CaiaabshacaqGYbGaaeyDaiaabogacaqG0bGaaeyDaiaabkhacaqGHbGaaeiBaiaaysW7caqGWbGaaeOCaiaab+gacaqGWbGaaeyzaiaabkhacaqG0bGaaeyEaiaaygW7caaMb8UaaGjbVlaadYeacaWGLbGaamOBaiaadEgacaWG0bGaamiAaiaacMcacaGGVaWaaOaaaeaacaqGlbGaae4xaiaabogacaqGVbGaaeOBaiaabohacaqG0bGaaeOCaiaabggacaqGPbGaaeOBaiaabshaaSqabaaaaa@6274@
    • K_constraint = “constraint coefficient” on structural property. Def=0.0699
  • ρ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@37B6@ : beam section’s radius of gyration
  • E: material young’s modulus