The shape functions defining the bilinear element used in the Mindlin plate
are:
(1)
ΦI(ξ,η)=14(1+ξIξ)(1+ηIη)
or, in terms of local coordinates:
(2)
ΦI(x,y)=aI+bIx+cIy+dIxy
It is also useful to write the shape functions in the
Belytschko-Bachrach
1 mix form:
(3)
ΦI(x,y,ξη)=ΔI+bxIx+byIy+γIξη
with
ΔI=[tI−(tIxI)bxI−(tIyI)byI] ; t=(1,1,1,1)
bxI=(y24y31y42y13)/A ; (fij=(fi−fj)/2)
byI=(x42x13x24x31)/A
γI=[ΓI−(ΓJxJ)bxI−(ΓJyJ)bxI]/4 ; Γ=(1,−1,1,−1)
A
is the area of the element.
The velocity of the element
at the mid-plane reference point is found using the relations:
(4)
vx=4∑I=1ΦIvxI
(5)
vy=4∑I=1ΦIvyI
(6)
vz=4∑I=1ΦIvzI
Where,
vxI,vyI,vzI
are the nodal velocities in the x, y, z directions.
In a
similar fashion, the element rotations are found by:
(7)
ωx=4∑I=1ΦIωxI
(8)
ωy=4∑I=1ΦIωyI
Where,
ωxI
and
ωyI
are the nodal rotational velocities about the x and y
reference axes.
The velocity change with respect to the coordinate change is given
by:
(9)
∂vx∂x=4∑I=1∂ΦI∂xvxI
(10)
∂vx∂y=4∑I=1∂ΦI∂yvxI
1
Belytschko T. and Bachrach W.E., 「Efficient implementation of
quadrilaterals with high coarse-mesh accuracy」, Computer Methods in
Applied Mechanics and Engineering, 54:279-301, 1986.