Loading [MathJax]/jax/output/CommonHTML/jax.js

Bilinear Shape Functions

The shape functions defining the bilinear element used in the Mindlin plate are:(1)
ΦI(ξ,η)=14(1+ξIξ)(1+ηIη)
or, in terms of local coordinates:(2)
ΦI(x,y)=aI+bIx+cIy+dIxy
It is also useful to write the shape functions in the Belytschko-Bachrach 1 mix form:(3)
ΦI(x,y,ξη)=ΔI+bxIx+byIy+γIξη

with

ΔI=[tI(tIxI)bxI(tIyI)byI];t=(1,1,1,1)

bxI=(y24y31y42y13)/A;(fij=(fifj)/2)

byI=(x42x13x24x31)/A

γI=[ΓI(ΓJxJ)bxI(ΓJyJ)bxI]/4;Γ=(1,1,1,1)

A is the area of the element.

The velocity of the element at the mid-plane reference point is found using the relations:(4)
vx=4I=1ΦIvxI
(5)
vy=4I=1ΦIvyI
(6)
vz=4I=1ΦIvzI

Where, vxI,vyI,vzI are the nodal velocities in the x, y, z directions.

In a similar fashion, the element rotations are found by:(7)
ωx=4I=1ΦIωxI
(8)
ωy=4I=1ΦIωyI

Where, ωxI and ωyI are the nodal rotational velocities about the x and y reference axes.

The velocity change with respect to the coordinate change is given by:(9)
vxx=4I=1ΦIxvxI
(10)
vxy=4I=1ΦIyvxI
1
Belytschko T. and Bachrach W.E., 「Efficient implementation of quadrilaterals with high coarse-mesh accuracy」, Computer Methods in Applied Mechanics and Engineering, 54:279-301, 1986.