View new features for Altair HyperWorks 2023.
Learn the basics and discover the workspace.
Learn more about the Altair HyperWorks suite of products with interactive tutorials.
Start and configure the applications.
View a list of deprecated panels and their newer, equivalent workflows.
Create, open, import, and save models.
Set up sessions and create report templates.
Solver interfaces supported in HyperMesh.
A solver interface is made up of a template and a FE-input reader.
Browsers provide a structured view of model data, which you can use to review, modify, create, and manage the contents of a model. In addition to visualization, browsers offer features like search, filtering, and sorting, which enhance your ability to navigate and interact with the model data.
Create and edit 2D parametric sketch geometry.
Create, edit, and cleanup geometry.
FE geometry is topology on top of mesh, meaning CAD and mesh exist as a single entity. The purpose of FE geometry is to add vertices, edges, surfaces, and solids on FE models which have no CAD geometry.
Explore the different types of mesh you can create in HyperMesh and create and edit 0D, 1D, 2D, and 3D elements.
Create, organize and manage parts and subsystems.
HyperMesh composites modeling.
Create connections between parts of your model.
Rapidly change the shape of the FE mesh without severely sacrificing the mesh quality.
Create a reduced ordered model to facilitate optimization at the concept phase.
Workflow to support topology optimization model build and setup.
Setup an Optimization in HyperMesh.
Multi-disciplinary design exploration and optimization tools.
Validate the model built before running solver analysis.
Models require loads and boundary conditions in order to represent the various physics and/or physical equivalents to bench and in-use testing.
Reduce a full 3D model with axisymmetric surfaces while accounting for imperfections.
Tools and workflows that are dedicated to rapidly creating new parts for specific use cases, or amending existing parts. The current capabilities are focused on stiffening parts.
Tools used for crash and safety analysis.
Use airbag folder utilities and export a resulting airbag in a Radioss deck.
Essential utility tools developed using HyperMesh-Tcl.
Import an aeroelastic finite element model with Nastran Bulk Data format.
Framework to plug certification methods to assess margin of safety from the model and result information.
Create and evaluate evaluation lines and optimize interfaces to eliminate squeak and rattle issues.
Use PhysicsAI to build fast predictive models from CAE data. PhysicsAI can be trained on data with any physics or remeshing and without design variables.
Results data can be post-processed using both HyperMesh and HyperView.
HyperGraph is a data analysis and plotting tool with interfaces to many file formats.
MotionView is a general pre-processor for Multibody Dynamics.
MotionView is a general pre-processor for Multibody Dynamics.
The Model Browser allows you to view the MotionView model structure while providing display and editing control of entities.
The MotionView ribbons allows you to quickly access tools and standard functions, and is located along the top of MotionView.
MotionView supports the importing of several types of CAD and FE formats.
MotionView has many pre-processing and post-processing capabilities with regards to flexible bodies, or flexbodies, for multibody dynamics models.
Add an FMU to the model or export a model as an FMU.
Explore the various vehicle modeling tools.
This section describes how to add a full vehicle model with the Altair Driver and include the events. The events are simulation commands that enable the Altair Driver control to perform the vehicle maneuvers. A model with an event exports an Altair Driver File (.adf) and the MotionSolve (.xml) files to be simulated.
This section describes all of the full vehicle events currently supported with Altair Driver. It also describes all of the events and their parameters.
The Altair Driver is a set of MotionView models and libraries that allows MotionView users to control and script vehicle events.
Controllers form the core of the driver. The Controller Library has various basic controllers its arsenal to calculate different driver outputs.
Open-loop controllers define vehicle inputs directly without feedback (for example, steering wheel angle vs. time).
Closed-loop controllers use vehicle responses (for example, speed, position, yaw rate, etc.) as feedback to determine the vehicle inputs needed to match a desired vehicle response, such as following a demand lean profile (for two wheelers) or a path.
The Feed-forward controller is the predictive controller of the Altair Driver. It predicts some of the states of the vehicle after look ahead time, or look ahead distance, and accordingly drives the throttle and brake signals to match the demand signal (for example, speed).
A Proportional-Integral-Derivative (PID) controller is a feedback controller that computes a vehicle input using the error, the integral of error, and the rate of change of error between a desired vehicle response and the actual vehicle response.
Driver can be loaded using the Model Wizard of MDLLIB when the Full Vehicle with Driver option is chosen. Driver has some special requirements to interface with the vehicle model. These requirements are resolved automatically if the vehicle model is built using the Full vehicle with advanced driver option in the Model Wizard in MDLLIB.
Driver uses the Altair Driver File (ADF) to access all the event parameters in the Solver.
Reference material for the scripting interface which is a set of Tcl/Tk commands.
Reference materials for the MotionView MDL Language, Tire Modeling, and the MDL Library.
Reference material detailing command statements, model statements, functions and the Subroutine Interface available in MotionSolve.
Reference material for Templex (a general purpose text and numeric processor) and additional mathematical functions and operators.
Reference materials for the MotionView Python Language.
MediaView plays video files, displays static images, tracks objects, and measures distances.
Use TableView to create an Excel-like spreadsheet.
TextView math scripts reference vector data from HyperGraph windows to automate data processing and data summary.
Create, define, and export reports.
Explore, organize and manage your personal data, collaborate in teams, and connect to other data sources, such as corporate PLM systems to access CAD data or publish simulation data.
MotionView is a general pre-processor for Multibody Dynamics.
Explore the various vehicle modeling tools.
Controllers form the core of the driver. The Controller Library has various basic controllers its arsenal to calculate different driver outputs.
Closed-loop controllers use vehicle responses (for example, speed, position, yaw rate, etc.) as feedback to determine the vehicle inputs needed to match a desired vehicle response, such as following a demand lean profile (for two wheelers) or a path.
© 2023 Altair Engineering, Inc. All Rights Reserved.
Intellectual Property Rights Notice | Technical Support | Cookie Consent