複合材破壊モデル Radiossでは、次の複合材破壊モデルを使用して複合材の材料破壊を表現できます。 /FAIL/HASHIN /FAIL/PUCK /FAIL/LAD_DAMA /FAIL/CHANG 複合材材料は、2種類の材料からなります(マトリックスと補強繊維)。各材料の破壊挙動は異なります。Radiossでは、同一複合材要素内でマトリックスと繊維に異なる破壊モデルを使用できます(TYPE11、TYPE16、TYPE17、TYPE51、PCOMPP、またはTYPE22というプロパティを持つ要素の場合)。たとえば、繊維破壊に/FAIL/HASHIN、マトリックス破壊に/FAIL/PUCK、層またはプライ間の剥離に/FAIL/LAD_DAMAを使用できます(複合材に複数の層またはプライが定義されている場合)。 上記の一般的な複合材破壊モデルに加えて、/FAIL/FLD(ガラスのような、層(プライ)内の等方性脆性複合材材料に使用されます)、/FAIL/ENERGY、/FAIL/TBUTCHER、および/FAIL/TENSSTRAINを使用して、複合材の層(プライ)の破壊を表現することもできます。 /FAIL/HASHIN HASHIN破壊では、次の2つの主要破壊モードが考慮されます。 繊維モード:引張時の繊維破断または圧縮時の繊維座屈が原因で、複合材が破壊します。したがって、/FAIL/HASHINでは、引張 / せん断繊維モード、圧縮繊維モード、およびクラッシュモードは繊維モードです。方向1が繊維方向である場合、平面23が繊維モードの主な破壊平面となります。 マトリックスモード: 繊維からのマトリックス亀裂が原因で、複合材が破壊します。破壊マトリックスモード(またはせん断破壊マトリックスモード)と剥離モードはどちらもマトリックスモードです。マトリックスモードの破壊平面は繊維と平行であり、応力 σ 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395B@ はこのモードでは考慮されません。 図 1. 一方向薄層モデルの繊維モードとマトリックスモード 一方向薄層モデル1内の繊維は、1方向のみに沿っており、繊維薄層モデル内の繊維は2方向に沿っています。 一方向薄層モデル 繊維薄層モデル 損傷基準 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ 、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ の場合は、破壊なし。 ここで、 D = M a x ( F 1 , F 2 , F 3 , F 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaaaa@4509@ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ 、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ の場合は、破壊なし。 ここで、 D = M a x ( F 1 , F 2 , F 3 , F 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaaaa@4509@ 引張 / せん断繊維モード F 1 = ( 〈 σ 11 〉 σ 1 t ) 2 + ( σ 12 2 + σ 13 2 σ 12 f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGymaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaamOzaaaakmaa CaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@5538@ F 1 = ( 〈 σ 11 〉 σ 1 t ) 2 + ( σ 12 2 + σ 13 2 σ a f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGymaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaadggaaeaacaWGMbaaaOWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@54A7@ F 2 = ( 〈 σ 22 〉 σ 2 t ) 2 + ( σ 12 2 + σ 23 2 σ b f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaadkgaaeaacaWGMbaaaOWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@54AD@ ここで、 σ a f = σ 12 f , σ b f = σ 12 f σ 2 t σ 1 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaqhaaWcbaGaamyyaaqaaiaadAgaaaGccqGH9aqpcqaH dpWCdaqhaaWcbaGaaGymaiaaikdaaeaacaWGMbaaaOGaaGzaVlaays W7caGGSaGaaGjcVlaaywW7caaMb8Uaeq4Wdm3aa0baaSqaaiaadkga aeaacaWGMbaaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaaigdacaaIYa aabaGaamOzaaaakmaalaaabaGaeq4Wdm3aa0baaSqaaiaaikdaaeaa caWG0baaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG0baaaa aaaaa@5AE6@ 圧縮繊維モード F 2 = ( 〈 σ a 〉 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaa aeaadaaadaqaaiabeo8aZnaaBaaaleaacaWGHbaabeaaaOGaayzkJi aawQYiaaqaaiabeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaMe8oaaa@48FE@ ここで、 σ a = − σ 11 + 〈 − σ 22 + σ 33 2 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaGjbVlabeo8aZnaaBaaaleaacaWGHbaabeaakiabg2da9iabgkHi Tiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaaMb8 +aaaWaaeaacqGHsisldaWcaaqaaiabeo8aZnaaBaaaleaacaaIYaGa aGOmaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaae qaaaGcbaGaaGOmaaaaaiaawMYicaGLQmcaaaa@515F@ F 3 = ( 〈 σ a 〉 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIZaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaWGHbaabeaaaOGaayzkJiaawQYiaaqaai abeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaaaa@4388@ ここで、 σ a = − σ 11 + 〈 − σ 33 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadggaaeqaaOGaeyypa0JaeyOeI0Iaeq4Wdm3aaSbaaSqa aiaaigdacaaIXaaabeaakiabgUcaRiaaygW7daaadaqaaiabgkHiTi abeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGLQmca aaa@46D3@ F 4 = ( 〈 σ b 〉 σ 2 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaaI0aaabeaakiabg2da9maabmaabaWaaSaa aeaadaaadaqaaiabeo8aZnaaBaaaleaacaWGIbaabeaaaOGaayzkJi aawQYiaaqaaiabeo8aZnaaDaaaleaacaaIYaaabaGaam4yaaaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@476B@ ここで、 σ b = − σ 22 + 〈 − σ 33 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaadkgaaeqaaOGaeyypa0JaeyOeI0Iaeq4W dm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaaygW7daaada qaaiabgkHiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaa wMYicaGLQmcaaaa@4AB6@ クラッシュモード F 3 = ( 〈 p 〉 σ c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIZaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiaadchaaiaawMYicaGLQmcaaeaacqaHdpWCdaWgaaWcbaGaam4yaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@40E2@ ここで、 p = − σ 11 + σ 22 + σ 33 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4m aaaaaaa@45C2@ F 5 = ( 〈 p 〉 σ c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI1aaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiaadchaaiaawMYicaGLQmcaaeaacqaHdpWCdaWgaaWcbaGaam4yaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@40E4@ ここで、 p = − σ 11 + σ 22 + σ 33 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4m aaaaaaa@45C2@ せん断破壊マトリックスモード F 6 = ( σ 12 σ 12 m ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI2aaabeaakiabg2da9maabmaabaWaaSaaaeaacqaHdpWC daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaai aaigdacaaIYaaabaGaamyBaaaaaaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaaaa@4312@ 破壊マトリックスモード F 4 = ( 〈 σ 22 〉 σ 2 t ) 2 + ( σ 23 S 23 ) 2 + ( σ 12 S 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI0aaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWG tbWaaSbaaSqaaiaaikdacaaIZaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGaeq4W dm3aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaaa@56F7@ ここで、 S 12 = σ 12 m + 〈 − σ 22 〉 tan ϕ S 23 = σ 23 m + 〈 − σ 22 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaGOmaaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaacaWGtbWaaSbaaSqaai aaikdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaaleaacaaIYaGa aG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgkHiTiabeo8aZn aaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQmcaciGG0bGa aiyyaiaac6gacqaHvpGzaaaa@5D2F@ 剥離モード F 5 = S d e l 2 [ ( 〈 σ 33 〉 σ 3 t ) 2 + ( σ 23 S ˜ 23 ) 2 + ( σ 13 S 13 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI1aaabeaakiabg2da9iaadofadaqhaaWcbaGaamizaiaa dwgacaWGSbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaadaWcaaqaam aaamaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzk JiaawQYiaaqaaiabeo8aZnaaDaaaleaacaaIZaaabaGaamiDaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaO qaaiqadofagaacamaaBaaaleaacaaIYaGaaG4maaqabaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWG tbWaaSbaaSqaaiaaigdacaaIZaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaaaaa@5D97@ ここで、 S 13 = σ 13 m + 〈 − σ 33 〉 tan ϕ S ˜ 23 = σ 23 m + 〈 − σ 33 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaaceWGtbGbaGaadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa ikdacaaIZaaabaGaamyBaaaakiabgUcaRmaaamaabaGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQYiaiGa cshacaGGHbGaaiOBaiabew9aMbaaaa@5D44@ F 7 = S d e l 2 [ ( 〈 σ 33 〉 σ 3 t ) 2 + ( σ 23 S 23 ) 2 + ( σ 13 S 13 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI3aaabeaakiabg2da9iaadofadaqhaaWcbaGaamizaiaa dwgacaWGSbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaadaWcaaqaam aaamaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzk JiaawQYiaaqaaiabeo8aZnaaDaaaleaacaaIZaaabaGaamiDaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaO qaaiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaaaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaae aacqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4uamaa BaaaleaacaaIXaGaaG4maaqabaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaGccaGLBbGaayzxaaaaaa@5D8A@ ここで、 S 13 = σ 13 m + 〈 − σ 33 〉 tan ϕ S ˜ 23 = σ 23 m + 〈 − σ 33 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaaceWGtbGbaGaadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa ikdacaaIZaaabaGaamyBaaaakiabgUcaRmaaamaabaGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQYiaiGa cshacaGGHbGaaiOBaiabew9aMbaaaa@5D44@ 注: 〈 a 〉 = { a i f a > 0 0 i f a < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaaadaqaaiaadggaaiaawMYicaGLQmcacqGH9aqpdaGabaqaauaa beqaceaaaeaacaWGHbGaaGjbVlaaysW7caWGPbGaamOzaiaaysW7ca WGHbGaeyOpa4JaaGimaaqaaiaaicdacaaMe8UaaGjbVlaadMgacaWG MbGaaGjbVlaadggacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@5187@ /FAIL/HASHINでは、材料強度 σ 1 t , σ 2 t , σ 3 t , σ 1 c , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaamiDaaaakiaacYcacqaHdpWCdaqhaaWcbaGaaG4maa qaaiaadshaaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG JbaaaOGaaiilaiabeo8aZnaaDaaaleaacaaIYaaabaGaam4yaaaaaa a@4AF4@ は、複合材の引張 / 圧縮試験から得られます。 破砕強度 σ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaaaa@38CD@ と繊維せん断強度 σ 12 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamOzaaaaaaa@3A48@ は、準-静的パンチせん断試験(QS-PST)から得ることができます。6 サポートスパン径対パンチ径比率(SPR)からの破砕強度 σ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaaaa@38CD@ は0であり、SPRからの繊維せん断強度 σ 12 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamOzaaaaaaa@3A48@ は1.1です。 ϕ はクーロン摩擦角です。複合材が(引張ではなく)圧縮も受けている場合は、複合材のせん断強度が高まることが確認されています。その原因は、マトリックスと繊維間の摩擦です。 せん断強度は、圧縮応力に比例すると見なされ、次のように計算されます:(1) S 12 = σ 12 m + 〈 − σ 22 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqaHdpWCdaqhaaWcbaGa aGymaiaaikdaaeaacaWGTbaaaOGaey4kaSYaaaWaaeaacqGHsislcq aHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLPmIaayPkJaGa ciiDaiaacggacaGGUbGaeqy1dygaaa@498D@ 図 2. 摩擦角 ϕ は、軸に対してさまざまな角度 θ (例: 30 ∘ , 45 ∘ , 60 ∘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaaG imamaaCaaaleqabaGaeSigI8gaaOGaaiilaiaaisdacaaI1aWaaWba aSqabeaacqWIyiYBaaGccaGGSaGaaGOnaiaaicdadaahaaWcbeqaai ablIHiVbaaaaa@417F@ など)で圧縮試験を行うことでフィッティングできます。 図 3. σ 12 m , σ 13 m , σ 23 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamyBaaaakiaacYcacqaHdpWCdaqh aaWcbaGaaGymaiaaiodaaeaacaWGTbaaaOGaaiilaiabeo8aZnaaDa aaleaacaaIYaGaaG4maaqaaiaad2gaaaaaaa@4478@ は、3方向のマトリックスせん断試験から得ることができます。 S d e l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGKbGaamyzaiaadYgaaeqaaaaa@39BE@ は、剥離基準のスケールファクターです。これは、実験で剥離破壊を損傷領域と相関付けるための複合材剥離実験データによってフィッティングできます。 /FAIL/PUCK Puck破壊では、次の2タイプの破壊が考慮されます。 繊維破壊: 繊維が引張強度または圧縮強度の限界に達することにより、複合材が破壊します。 繊維間破壊(IFF): 繊維マトリックスの亀裂が原因で、複合材が破壊します。 損傷基準 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ の場合は、破壊なし。 ここで、 D = M a x ( e f ( t e n s i l e ) , e f ( c o m p r e s s i o n ) , e f ( M o d e A ) , e f ( M o d e B ) , e f ( M o d e C ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakiaacIcacaWG0bGaamyzaiaad6gacaWGZbGaamyAaiaadY gacaWGLbGaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGa aiikaiaadogacaWGVbGaamyBaiaadchacaWGYbGaamyzaiaadohaca WGZbGaamyAaiaad+gacaWGUbGaaiykaiaacYcacaWGLbWaaSbaaSqa aiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwgacaWGbb GaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGaaiikaiaa d2eacaWGVbGaamizaiaadwgacaWGcbGaaiykaiaacYcacaWGLbWaaS baaSqaaiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwga caWGdbGaaiykaaGaayjkaiaawMcaaaaa@6DD7@ 繊維部破壊 引張繊維破壊モード: σ 11 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH+aGpcaaI Waaaaa@3F79@ e f ( t e n s i l e ) = σ 11 σ 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamiDaiaadwga caWGUbGaam4CaiaadMgacaWGSbGaamyzaaGaayjkaiaawMcaaiabg2 da9maalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqa aiabeo8aZnaaDaaaleaacaaIXaaabaGaamiDaaaaaaaaaa@4C2A@ 圧縮繊維破壊モード: σ 11 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH8aapcaaI Waaaaa@3F75@ e f ( c o m p r e s s i o n ) = | σ 11 | σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaam4yaiaad+ga caWGTbGaamiCaiaadkhacaWGLbGaam4CaiaadohacaWGPbGaam4Bai aad6gaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaaemGabaGaeq4W dm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOGaay5bSlaawIa7aaqaai abeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaaaa@530F@ 繊維間破壊(IFF) 2 モードA( σ 22 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH+aGpcaaI Waaaaa@3F7B@ の場合): 図 4. e f ( M o d e A ) = 1 σ ¯ 12 [ ( σ ¯ 12 σ 2 t − p 12 + ) 2 σ 22 2 + σ 12 2 + p 12 + σ 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadgeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacuaHdpWCgaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaa aOWaamWaaeaadaGcaaqaamaabmaabaWaaSaaaeaacuaHdpWCgaqeam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqaHdpWCdaqhaaWcbaGa aGOmaaqaaiaadshaaaaaaOGaeyOeI0IaamiCamaaDaaaleaacaaIXa GaaGOmaaqaaiabgUcaRaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGcdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHRaWkcaWGWb Waa0baaSqaaiaaigdacaaIYaaabaGaey4kaScaaOGaeq4Wdm3aaSba aSqaaiaaikdacaaIYaaabeaaaOGaay5waiaaw2faaaaa@68DA@ モードC( σ 22 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH8aapcaaI Waaaaa@3F77@ の場合): 図 5. e f ( M o d e C ) = [ ( σ 12 2 ( 1 + p 22 − ) σ ¯ 12 ) 2 + ( σ 22 σ 2 c ) 2 ] ( σ 2 c − σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadoeaaiaawIcacaGLPaaacqGH9aqpdaWadiqaam aabmGabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqa aaGcbaGaaGOmaiaacIcacaaIXaGaey4kaSIaamiCamaaDaaaleaaca aIYaGaaGOmaaqaaiabgkHiTaaakiaacMcacuaHdpWCgaqeamaaBaaa leaacaaIXaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaey4kaSYaaeWaceaadaWcaaqaaiabeo8aZnaaBaaa leaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaqhaaWcbaGaaGOmaa qaaiaadogaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGccaGLBbGaayzxaaWaaeWaceaadaWcaaqaaiabeo8aZnaaDaaale aacaaIYaaabaGaam4yaaaaaOqaaiabgkHiTiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaaaa@69A4@ モードB: 図 6. e f ( M o d e B ) = 1 σ ¯ 12 ( σ 12 2 + ( p 12 − σ 22 ) 2 + p 12 − σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadkeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacuaHdpWCgaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaa aOWaaeWaceaadaGcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaa qaaiaaikdaaaGccqGHRaWkdaqadiqaaiaadchadaqhaaWcbaGaaGym aiaaikdaaeaacqGHsislaaGccqaHdpWCdaWgaaWcbaWaaSbaaWqaai aaikdacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaabeaakiabgUcaRiaadchadaqhaaWcbaGaaGymaiaaik daaeaacqGHsislaaGccqaHdpWCdaWgaaWcbaWaaSbaaWqaaiaaikda caaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaaa@5F9F@ 繊維間破壊では、モードAは横繊維方向(繊維方向に対して直角)の引張がかかった状態の破壊を示し、この場合、せん断荷重によって破壊限界が引き下げられる可能性があります。 横繊維方向の圧縮がかかっている場合、最初は圧縮が増大すると、複合材のせん断荷重も増大します(モードB)。圧縮が増大し続けると、せん断荷重は減少に転じます(モードC)。 入力パラメータ 繊維破断破壊の場合、繊維強度 σ 1 t , σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIXaaabaGaam4yaaaaaaa@3DE7@ は、繊維方向の引張および圧縮の複合材試験から得られます。 繊維間破壊の場合、強度 σ 2 t , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaaaaa@3DE9@ は、横繊維方向の引張および圧縮の複合材試験から得られます。 せん断強度 σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3974@ は、純せん断試験( σ 2 = σ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaigda aeqaaOGaeyypa0JaaGimaaaa@3E25@ )によって得られます。 σ 2 t , σ 2 c , σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaakiaacYcacuaHdpWCgaqeamaaBaaaleaaca aIXaGaaGOmaaqabaaaaa@4221@ を使用して、モードBとモードCの p 22 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIYaGaaGOmaaqaaiabgkHiTaaaaaa@397D@ と p 12 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIYaGaaGOmaaqaaiabgkHiTaaaaaa@397D@ が求まります。 σ 2 t , σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiqbeo8aZzaaraWaaSba aSqaaiaaigdacaaIYaaabeaaaaa@3DD3@ と、横繊維方向の追加の引張-せん断試験により、 p 12 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaaaaa@3971@ が求まります。横繊維方向の追加の引張-せん断試験では、等しい引張-せん断( σ 22 = σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DD3@ による)荷重を使用できます。 これで、下記のように σ 22 − σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DBA@ 平面内の破壊曲線を得ることができます。 図 7. σ 22 − σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DBA@ 平面内のIFF破壊曲線 p 12 + , p 12 − , p 22 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiaacYcacaWGWbWaa0ba aSqaaiaaigdacaaIYaaabaGaeyOeI0caaOGaaiilaiaadchadaqhaa WcbaGaaGOmaiaaikdaaeaacqGHsislaaaaaa@41F2@ パラメータについて3。カーボンファイバー複合材の場合は p 12 + = 0.35 , p 12 − = 0.3 , p 22 − = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiabg2da9iaaicdacaGG UaGaaG4maiaaiwdacaGGSaGaamiCamaaDaaaleaacaaIXaGaaGOmaa qaaiabgkHiTaaakiabg2da9iaaicdacaGGUaGaaG4maiaacYcacaWG WbWaa0baaSqaaiaaikdacaaIYaaabaGaeyOeI0caaOGaeyypa0JaaG imaiaac6cacaaIYaaaaa@4C47@ を使用し、グラスファイバー複合材の場合は p 12 + = 0.3 , p 12 − = 0.25 , p 22 − = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiabg2da9iaaicdacaGG UaGaaG4maiaacYcacaWGWbWaa0baaSqaaiaaigdacaaIYaaabaGaey OeI0caaOGaeyypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcacaWG WbWaa0baaSqaaiaaikdacaaIYaaabaGaeyOeI0caaOGaeyypa0JaaG imaiaac6cacaaIYaaaaa@4C46@ を使用します。 /FAIL/LAD_DAMA /FAIL/LAD_DAMAを使用して、複合材層間の剥離を表現します(マトリックス内の損傷の伝播)。仮想インターフェース(接触)を介して層同士が結合されていると想定します。 図 8. たとえば、下記のように複合材に荷重がかかっている場合、引張 σ と方向3の変位 δ は次の曲線で示されているとおりです。 図 9. 引張と変位の関係を示す曲線の下の面積は、剥離による吸収エネルギーを表します。これは、損傷インターフェースのひずみエネルギーとも呼ばれます。このひずみエネルギーによる破壊を以下に示します。ここでは3つの剥離モードが考慮されています:(2) E D = 1 2 [ 〈 σ 33 〉 2 K 3 ( 1 − d 3 ) + 〈 − σ 33 〉 2 K 3 + σ 32 2 K 2 ( 1 − d 2 ) + σ 31 2 K 1 ( 1 − d 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGebaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaWcaaqaamaaamaabaGaeq4Wdm3aaSbaaSqaaiaaio dacaaIZaaabeaaaOGaayzkJiaawQYiamaaCaaaleqabaGaaGOmaaaa aOqaaiaadUeadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaaigdacq GHsislcaWGKbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaa aiabgUcaRmaalaaabaWaaaWaaeaacqGHsislcqaHdpWCdaWgaaWcba GaaG4maiaaiodaaeqaaaGccaGLPmIaayPkJaWaaWbaaSqabeaacaaI YaaaaaGcbaGaam4samaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkda Wcaaqaaiabeo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaGcdaahaaWc beqaaiaaikdaaaaakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaOWaae WaaeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaaaacqGHRaWkdaWcaaqaaiabeo8aZnaaBaaaleaaca aIZaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaWGlbWa aSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0Iaamizam aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGL Dbaaaaa@6B73@ ここで、 σ 33 , σ 32 , σ 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaiodacaaIZaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aG4maiaaikdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIZaGaaG ymaaqabaaaaa@41A2@ は、以下の3つの剥離挙動モードにおける応力です。 図 10. 剥離のひずみエネルギー E D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGebaabeaaaaa@37B5@ により、これらの3モードについて、損傷エネルギー解放率とも呼ばれる熱力学的な力(仮想インターフェースの接触力)を計算できます: モデルI(DCB試験体5) Y d 3 = ∂ E D ∂ d 3 | σ = c s t = 1 2 〈 σ 33 〉 2 K 3 ( 1 − d 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIZaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaamaaamaa baGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQ YiamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUeadaWgaaWcbaGaaG4m aaqabaGcdaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaio daaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@5869@ モデルII(ENF試験体5) Y d 2 = ∂ E D ∂ d 2 | σ = c s t = 1 2 σ 32 2 K 2 ( 1 − d 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIYaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiabeo8a ZnaaBaaaleaacaaIZaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaa aakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaaIXaGa eyOeI0IaamizamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@5694@ モデルIII Y d 1 = ∂ E D ∂ d 1 | σ = c s t = 1 2 σ 31 2 K 1 ( 1 − d 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIXaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiabeo8a ZnaaBaaaleaacaaIZaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaa aakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXaGa eyOeI0IaamizamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@568F@ ここで、 K 3 , K 2 , K 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIZaaabeaakiaacYcacaWGlbWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaadUeadaWgaaWcbaGaaGymaaqabaaaaa@3C92@ は、仮想インターフェースの剛性(層間剛性とも呼ばれます)です。これらの値は次のように計算できます:(3) K 3 = 2 E 33 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiaadweadaWg aaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFE@ K 2 = 2 G 23 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGOmaiaadEeadaWg aaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFE@ K 1 = 2 G 13 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadEeadaWg aaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFC@ ここで、 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39B0@ 仮想インターフェースの板厚。これは、層厚の5分の1と想定できます。 G 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 、 G 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 、 E 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 上層または下層から。 d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadMgaaeqaaaaa@3ABA@ 損傷変数( i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ =1,2,3)。 この値の範囲は0~1です。この値は、複合材が Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達すると累積し始めます。 モードIの例で、方向3での引張時において、最初、 d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaaaaa@37C8@ は、熱力学的な力 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ が Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達するまで常に0のままになります(左の図)。 図 11. Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達すると、損傷変数は増加し始め、1に達すると、 d 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaakiabg2da9iaaigdaaaa@3993@ となります(この時点の熱力学的な力 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ は臨界損傷 Y c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaam4yaaqabaaaaa@3C3A@ になります)。複合材は完全に剥離したと見なすことができ、複合材を直ちに削除するか、応力を小さくすることができます。Radiossでは、オプション τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabes8a0naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3F0D@ を使用して指数関数的な応力減少をシミュレートし、 Y c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaam4yaaqabaaaaa@3C3A@ における応力は σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadsgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamOCaaqa baGccaGGPaaaaa@3C58@ となります(損傷時の応力減少)。 熱力学的な力 Y d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaWGPbaabeaaaSqa baaaaa@3D61@ と d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbaabeaaaaa@37F9@ との関係は次のとおりです: d ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgw MiZkaaigdaaaa@3960@ の場合、 d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaaigdaaaa@38A0@ d < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgY da8iaaigdaaaa@389E@ の場合、 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DF@ は Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DF@ の関数(損傷評価則):(4) d = w ( Y ) = 〈 Y − Y 0 〉 Y c − Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadsgacqGH9aqpcaWG3bGaaiikaiaadMfacaGGPaGaeyypa0Za aSaaaeaadaaadiqaamaakaaabaGaamywaaWcbeaakiabgkHiTmaaka aabaGaamywamaaBaaaleaacaaIWaaabeaaaeqaaaGccaGLPmIaayPk JaaabaWaaOaaaeaacaWGzbWaaSbaaSqaaiaadogaaeqaaaqabaGccq GHsisldaGcaaqaaiaadMfadaWgaaWcbaGaaGimaaqabaaabeaaaaaa aa@4AED@ Y = Y d 3 + γ 1 Y d 1 + γ 2 Y d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaey ypa0JaamywamaaBaaaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWc beaakiabgUcaRiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadMfada WgaaWcbaGaamizamaaBaaameaacaaIXaaabeaaaSqabaGccqGHRaWk cqaHZoWzdaWgaaWcbaGaaGOmaaqabaGccaWGzbWaaSbaaSqaaiaads gadaWgaaadbaGaaGOmaaqabaaaleqaaaaa@4909@ ここで、 Y d i | t = sup Y d i | τ ≤ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbWaaS baaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleqaaOWaaqqaceaa daWgaaWcbaGaamiDaaqabaGccqGH9aqpciGGZbGaaiyDaiaacchaca WGzbWaaSbaaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleqaaOWa aqqaceaadaWgaaWcbaGaeqiXdqNaeyizImQaamiDaaqabaaakiaawE a7aaGaay5bSdaaaa@4A9D@ ここで、 γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaaGymaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaaikda aeqaaaaa@3D3E@ は他の2つの剥離モードを考慮するためのスケールファクターです。これは実験によって検証できます(DCBとENFの試験体試験5)。 モードIの例では、これは方向3における純粋剥離であるため、 γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaaGymaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaaikda aeqaaaaa@3D3E@ は0にすることができ、 Y = Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaey ypa0JaamywamaaBaaaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWc beaaaaa@3C33@ となります。 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ と d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaaaaa@37C8@ の関係は次のようになります: 図 12. 損傷変数はどれだけの速度で増加するのでしょうか?損傷速度 d ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca aaaa@36E9@ (損傷評価則とも呼ばれます)は次のように計算されます: d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaaigdaaaa@38A0@ であれば、 d ˙ = c o n s t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca Gaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshacaGGUaaaaa@3D61@ d < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgY da8iaaigdaaaa@389E@ であれば、 d ˙ = k a [ 1 − exp ( − a 〈 w ( Y ) − d 〉 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca Gaeyypa0ZaaSaaaeaacaWGRbaabaGaamyyaaaadaWadaqaaiaaigda cqGHsislciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadggada aadaqaaiaadEhadaqadaqaaiaadMfaaiaawIcacaGLPaaacqGHsisl caWGKbaacaGLPmIaayPkJaaacaGLOaGaayzkaaaacaGLBbGaayzxaa aaaa@4AAF@ k a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGRbaabaGaamyyaaaaaaa@37DD@ は最大損傷率で、破壊現象の最小継続時間を意味します。これの逆数 a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaam4Aaaaaaaa@37DD@ は特性時間と呼ばれ、1次元の引張試験によって得ることができます。 7 図 13. 複合材損傷の最小時間 Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3856@ を求めるための異なる応力による引張サンプルから、 σ − Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey OeI0IaeuiLdqKaamiDaaaa@3B06@ 曲線は、特性時間 a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaam4Aaaaaaaa@37DD@ に対応する垂直漸近線となります。 図 14. パラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ および k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ によって損傷評価則が決定されます。たとえば、定数パラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ (ここでは a = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbGaeyypa0JaaGymaaaa@3B5E@ )を使用した場合、 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ の値が小さくなるほど、複合材破壊の脆性は高くなります。 図 15. 定数パラメータ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ (ここでは k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbGaeyypa0JaaGymaaaa@3B5E@ )を使用した場合、 a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ の値が大きくなるほど、複合材破壊の脆性は高くなります。 図 16. /FAIL/CHANG Chang-Chang破壊では、次の2つの主要破壊モードが考慮されます。 繊維モード: 引張時の繊維破断または圧縮時の繊維座屈が原因で、複合材が破壊します。 マトリックスモード: 引張時または圧縮時のマトリックス破壊が原因で、複合材が破壊します。 この破壊基準はシェル要素専用です。 損傷基準 D = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebGaeyypa0JaaGymaaaa@3B41@ の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ の場合は、破壊なし。 ここで、 D = M a x ( e f 2 , e c 2 , e m 2 , e d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakmaaCaaaleqabaGaaGOmaaaakiaacYcacaWGLbWaaSbaaS qaaiaadogaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaadwga daWgaaWcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGSa GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaaaa@4A0D@ 。 繊維破損 引張繊維モード σ 11 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOpa4JaaGim aaaa@3DE9@ e f 2 = ( σ 11 σ 1 t ) 2 +β ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG0baa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi abek7aInaabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaaGymaiaaikdaae qaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@5256@ 圧縮繊維モード σ 11 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyipaWJaaGim aaaa@3DE5@ e c 2 = ( σ 11 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGJbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWGJbaa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@463B@ マトリックス亀裂 引張マトリックスモード σ 22 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOpa4JaaGim aaaa@3DE9@ e m 2 = ( σ 22 σ 2 t ) 2 + ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGTbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaikdaaeaacaWG0baa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaykW7caaMb8UaaGjcVlaayIW7daqadaqaamaalaaabaGaeq4Wdm3a aSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiqbeo8aZzaaraWaaSbaaS qaaiaaigdacaaIYaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaaaa@56F6@ 圧縮マトリックスモード σ 22 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyipaWJaaGim aaaa@3DE5@ e d 2 = ( σ 22 2 σ ¯ 12 ) 2 +[ ( σ 2 c 2 σ ¯ 12 ) 2 −1 ] σ 22 σ 2 c + ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaaGOmaiqbeo8aZzaaraWaaSbaaSqaaiaaigda caaIYaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa GccqGHRaWkdaWadaqaamaabmaabaWaaSaaaeaacqaHdpWCdaqhaaWc baGaaGOmaaqaaiaadogaaaaakeaacaaIYaGafq4WdmNbaebadaWgaa WcbaGaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaigdaaiaawUfacaGLDbaadaWcaaqaai abeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaqh aaWcbaGaaGOmaaqaaiaadogaaaaaaOGaey4kaSYaaeWaaeaadaWcaa qaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacuaHdpWC gaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaaa@6754@ ここで、 方向1 繊維方向。 σ 1 t , σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIXaaabaGaam4yaaaaaaa@3DE7@ 繊維の引張 / 圧縮強度。 σ 2 t , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaaaaa@3DE9@ マトリックス強度。 方向2(方向1に対して垂直)の引張荷重または圧縮荷重。 σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3974@ 複合材プライ平面のせん断強度。 β せん断スケールファクター(実験によって特定できます)。 損傷時の応力減少 損傷基準に達した後: HASHIN: D = M a x ( F 1 , F 2 , F 3 , F 4 ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@478A@ PUCK: D = M a x ( e f ( t e n s i l e ) , e f ( c o m p r e s s i o n ) , e f ( M o d e A ) , e f ( M o d e B ) , e f ( M o d e C ) ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakiaacIcacaWG0bGaamyzaiaad6gacaWGZbGaamyAaiaadY gacaWGLbGaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGa aiikaiaadogacaWGVbGaamyBaiaadchacaWGYbGaamyzaiaadohaca WGZbGaamyAaiaad+gacaWGUbGaaiykaiaacYcacaWGLbWaaSbaaSqa aiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwgacaWGbb GaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGaaiikaiaa d2eacaWGVbGaamizaiaadwgacaWGcbGaaiykaiaacYcacaWGLbWaaS baaSqaaiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwga caWGdbGaaiykaaGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@7058@ LAD_DAMA: d ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgw MiZkaaigdaaaa@3960@ CHANG: D = M a x ( e f 2 , e c 2 , e m 2 , e d 2 ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakmaaCaaaleqabaGaaGOmaaaakiaacYcacaWGLbWaaSbaaS qaaiaadogaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaadwga daWgaaWcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGSa GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@4C8E@ 応力が減少し始め、指数関数を使用することで徐々に減少して、数値的不安定が回避されます。(5) σ ( t ) = σ d ( t r ) ⋅ f ( t ) = σ d ( t r ) ⋅ exp ( − t − t r τ max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHdp GaaiikaiaadshacaGGPaGaeyypa0JaaC4WdmaaBaaaleaacaWGKbaa beaakiaacIcacaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiykaiabgw SixlGacAgaciGGOaGaamiDaiaacMcaaeaacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaeyypa0JaaC4WdmaaBaaaleaaca WGKbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiyk aiabgwSixlGacwgacaGG4bGaaiiCamaabmGabaGaeyOeI0YaaSaaae aacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGYbaabeaaaOqaaiab es8a0naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaaaOGaayjkai aawMcaaaaaaa@620C@ ここで、 t ≥ t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaGPaVlaayIW7caWG0bGaeyyzImRaamiDamaaBaaaleaacaWGYbaa beaaaaa@41CD@ τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ オプションは、損傷時に応力がどれだけ緩やかに減少するかを制御します。 図 17. ここで、 σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaC4WdmaaBaaaleaacaWGKbaabeaakmaabmGabaGaamiDamaaBaaa leaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@3FF5@ 損傷が D ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey yzImRaaGymaaaa@3AB2@ に達したときの応力成分。 t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3AD3@ σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaC4WdmaaBaaaleaacaWGKbaabeaakmaabmGabaGaamiDamaaBaaa leaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@3FF5@ の時間。 τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ 動的緩和の時間。 τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ の値が大きいほど、損傷時の応力減少が緩やかになります。通常、これには10~20時間ステップを要します。 参考文献 1 Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Journal of Applied Mechanics, Vol. 47, 1980, pp. 329-334.2 A. Puck, J. Kopp, and M. Knops., “Failure analysis of FRP laminates by means of physically based phenomenological models”.Composites Science Technology, 62. pp. 1633-1662.2002.3 A.Puck, J. Kopp, and M. Knops.“Guidelines for the determination of the parameters in Puck's action plane strength criterion”.Composites Science Technology 62. pp. 371-378.2002.4 L. Gornet, “Finite Element Damage Prediction of Composite Structures”.5 Ladevèze, P., Allix, O., Douchin, B., Lévêque, D., “A Computational Method for damage Intensity Prediction in a Laminated Composite Structure”, Computational mechanics—New Trends and Applications In: Idelsohn, S., Oñate E., and Dvorkin E., (eds.)CIMNE, Barcelona, Spain (1998).6 Gama B.A., Gillespie J.W., Punch Shear Behavior of Composites at Low and High Rates[M]// Fracture of Nano and Engineering Materials and Structures.Springer Netherlands, 2006.7 Allix, O. & Deü, Jean-François.(1997).Delay-damage modeling for fracture prediction of laminated composites under dynamic loading.Engineering Transactions.45.29-46.
複合材破壊モデル Radiossでは、次の複合材破壊モデルを使用して複合材の材料破壊を表現できます。 /FAIL/HASHIN /FAIL/PUCK /FAIL/LAD_DAMA /FAIL/CHANG 複合材材料は、2種類の材料からなります(マトリックスと補強繊維)。各材料の破壊挙動は異なります。Radiossでは、同一複合材要素内でマトリックスと繊維に異なる破壊モデルを使用できます(TYPE11、TYPE16、TYPE17、TYPE51、PCOMPP、またはTYPE22というプロパティを持つ要素の場合)。たとえば、繊維破壊に/FAIL/HASHIN、マトリックス破壊に/FAIL/PUCK、層またはプライ間の剥離に/FAIL/LAD_DAMAを使用できます(複合材に複数の層またはプライが定義されている場合)。 上記の一般的な複合材破壊モデルに加えて、/FAIL/FLD(ガラスのような、層(プライ)内の等方性脆性複合材材料に使用されます)、/FAIL/ENERGY、/FAIL/TBUTCHER、および/FAIL/TENSSTRAINを使用して、複合材の層(プライ)の破壊を表現することもできます。 /FAIL/HASHIN HASHIN破壊では、次の2つの主要破壊モードが考慮されます。 繊維モード:引張時の繊維破断または圧縮時の繊維座屈が原因で、複合材が破壊します。したがって、/FAIL/HASHINでは、引張 / せん断繊維モード、圧縮繊維モード、およびクラッシュモードは繊維モードです。方向1が繊維方向である場合、平面23が繊維モードの主な破壊平面となります。 マトリックスモード: 繊維からのマトリックス亀裂が原因で、複合材が破壊します。破壊マトリックスモード(またはせん断破壊マトリックスモード)と剥離モードはどちらもマトリックスモードです。マトリックスモードの破壊平面は繊維と平行であり、応力 σ 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395B@ はこのモードでは考慮されません。 図 1. 一方向薄層モデルの繊維モードとマトリックスモード 一方向薄層モデル1内の繊維は、1方向のみに沿っており、繊維薄層モデル内の繊維は2方向に沿っています。 一方向薄層モデル 繊維薄層モデル 損傷基準 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ 、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ の場合は、破壊なし。 ここで、 D = M a x ( F 1 , F 2 , F 3 , F 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaaaa@4509@ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ 、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ の場合は、破壊なし。 ここで、 D = M a x ( F 1 , F 2 , F 3 , F 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaaaa@4509@ 引張 / せん断繊維モード F 1 = ( 〈 σ 11 〉 σ 1 t ) 2 + ( σ 12 2 + σ 13 2 σ 12 f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGymaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaamOzaaaakmaa CaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@5538@ F 1 = ( 〈 σ 11 〉 σ 1 t ) 2 + ( σ 12 2 + σ 13 2 σ a f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGymaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaadggaaeaacaWGMbaaaOWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@54A7@ F 2 = ( 〈 σ 22 〉 σ 2 t ) 2 + ( σ 12 2 + σ 23 2 σ b f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaadkgaaeaacaWGMbaaaOWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@54AD@ ここで、 σ a f = σ 12 f , σ b f = σ 12 f σ 2 t σ 1 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaqhaaWcbaGaamyyaaqaaiaadAgaaaGccqGH9aqpcqaH dpWCdaqhaaWcbaGaaGymaiaaikdaaeaacaWGMbaaaOGaaGzaVlaays W7caGGSaGaaGjcVlaaywW7caaMb8Uaeq4Wdm3aa0baaSqaaiaadkga aeaacaWGMbaaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaaigdacaaIYa aabaGaamOzaaaakmaalaaabaGaeq4Wdm3aa0baaSqaaiaaikdaaeaa caWG0baaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG0baaaa aaaaa@5AE6@ 圧縮繊維モード F 2 = ( 〈 σ a 〉 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaa aeaadaaadaqaaiabeo8aZnaaBaaaleaacaWGHbaabeaaaOGaayzkJi aawQYiaaqaaiabeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaMe8oaaa@48FE@ ここで、 σ a = − σ 11 + 〈 − σ 22 + σ 33 2 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaGjbVlabeo8aZnaaBaaaleaacaWGHbaabeaakiabg2da9iabgkHi Tiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaaMb8 +aaaWaaeaacqGHsisldaWcaaqaaiabeo8aZnaaBaaaleaacaaIYaGa aGOmaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaae qaaaGcbaGaaGOmaaaaaiaawMYicaGLQmcaaaa@515F@ F 3 = ( 〈 σ a 〉 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIZaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaWGHbaabeaaaOGaayzkJiaawQYiaaqaai abeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaaaa@4388@ ここで、 σ a = − σ 11 + 〈 − σ 33 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadggaaeqaaOGaeyypa0JaeyOeI0Iaeq4Wdm3aaSbaaSqa aiaaigdacaaIXaaabeaakiabgUcaRiaaygW7daaadaqaaiabgkHiTi abeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGLQmca aaa@46D3@ F 4 = ( 〈 σ b 〉 σ 2 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaaI0aaabeaakiabg2da9maabmaabaWaaSaa aeaadaaadaqaaiabeo8aZnaaBaaaleaacaWGIbaabeaaaOGaayzkJi aawQYiaaqaaiabeo8aZnaaDaaaleaacaaIYaaabaGaam4yaaaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@476B@ ここで、 σ b = − σ 22 + 〈 − σ 33 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaadkgaaeqaaOGaeyypa0JaeyOeI0Iaeq4W dm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaaygW7daaada qaaiabgkHiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaa wMYicaGLQmcaaaa@4AB6@ クラッシュモード F 3 = ( 〈 p 〉 σ c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIZaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiaadchaaiaawMYicaGLQmcaaeaacqaHdpWCdaWgaaWcbaGaam4yaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@40E2@ ここで、 p = − σ 11 + σ 22 + σ 33 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4m aaaaaaa@45C2@ F 5 = ( 〈 p 〉 σ c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI1aaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiaadchaaiaawMYicaGLQmcaaeaacqaHdpWCdaWgaaWcbaGaam4yaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@40E4@ ここで、 p = − σ 11 + σ 22 + σ 33 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4m aaaaaaa@45C2@ せん断破壊マトリックスモード F 6 = ( σ 12 σ 12 m ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI2aaabeaakiabg2da9maabmaabaWaaSaaaeaacqaHdpWC daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaai aaigdacaaIYaaabaGaamyBaaaaaaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaaaa@4312@ 破壊マトリックスモード F 4 = ( 〈 σ 22 〉 σ 2 t ) 2 + ( σ 23 S 23 ) 2 + ( σ 12 S 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI0aaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWG tbWaaSbaaSqaaiaaikdacaaIZaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGaeq4W dm3aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaaa@56F7@ ここで、 S 12 = σ 12 m + 〈 − σ 22 〉 tan ϕ S 23 = σ 23 m + 〈 − σ 22 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaGOmaaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaacaWGtbWaaSbaaSqaai aaikdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaaleaacaaIYaGa aG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgkHiTiabeo8aZn aaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQmcaciGG0bGa aiyyaiaac6gacqaHvpGzaaaa@5D2F@ 剥離モード F 5 = S d e l 2 [ ( 〈 σ 33 〉 σ 3 t ) 2 + ( σ 23 S ˜ 23 ) 2 + ( σ 13 S 13 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI1aaabeaakiabg2da9iaadofadaqhaaWcbaGaamizaiaa dwgacaWGSbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaadaWcaaqaam aaamaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzk JiaawQYiaaqaaiabeo8aZnaaDaaaleaacaaIZaaabaGaamiDaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaO qaaiqadofagaacamaaBaaaleaacaaIYaGaaG4maaqabaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWG tbWaaSbaaSqaaiaaigdacaaIZaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaaaaa@5D97@ ここで、 S 13 = σ 13 m + 〈 − σ 33 〉 tan ϕ S ˜ 23 = σ 23 m + 〈 − σ 33 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaaceWGtbGbaGaadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa ikdacaaIZaaabaGaamyBaaaakiabgUcaRmaaamaabaGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQYiaiGa cshacaGGHbGaaiOBaiabew9aMbaaaa@5D44@ F 7 = S d e l 2 [ ( 〈 σ 33 〉 σ 3 t ) 2 + ( σ 23 S 23 ) 2 + ( σ 13 S 13 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI3aaabeaakiabg2da9iaadofadaqhaaWcbaGaamizaiaa dwgacaWGSbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaadaWcaaqaam aaamaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzk JiaawQYiaaqaaiabeo8aZnaaDaaaleaacaaIZaaabaGaamiDaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaO qaaiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaaaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaae aacqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4uamaa BaaaleaacaaIXaGaaG4maaqabaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaGccaGLBbGaayzxaaaaaa@5D8A@ ここで、 S 13 = σ 13 m + 〈 − σ 33 〉 tan ϕ S ˜ 23 = σ 23 m + 〈 − σ 33 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaaceWGtbGbaGaadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa ikdacaaIZaaabaGaamyBaaaakiabgUcaRmaaamaabaGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQYiaiGa cshacaGGHbGaaiOBaiabew9aMbaaaa@5D44@ 注: 〈 a 〉 = { a i f a > 0 0 i f a < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaaadaqaaiaadggaaiaawMYicaGLQmcacqGH9aqpdaGabaqaauaa beqaceaaaeaacaWGHbGaaGjbVlaaysW7caWGPbGaamOzaiaaysW7ca WGHbGaeyOpa4JaaGimaaqaaiaaicdacaaMe8UaaGjbVlaadMgacaWG MbGaaGjbVlaadggacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@5187@ /FAIL/HASHINでは、材料強度 σ 1 t , σ 2 t , σ 3 t , σ 1 c , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaamiDaaaakiaacYcacqaHdpWCdaqhaaWcbaGaaG4maa qaaiaadshaaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG JbaaaOGaaiilaiabeo8aZnaaDaaaleaacaaIYaaabaGaam4yaaaaaa a@4AF4@ は、複合材の引張 / 圧縮試験から得られます。 破砕強度 σ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaaaa@38CD@ と繊維せん断強度 σ 12 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamOzaaaaaaa@3A48@ は、準-静的パンチせん断試験(QS-PST)から得ることができます。6 サポートスパン径対パンチ径比率(SPR)からの破砕強度 σ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaaaa@38CD@ は0であり、SPRからの繊維せん断強度 σ 12 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamOzaaaaaaa@3A48@ は1.1です。 ϕ はクーロン摩擦角です。複合材が(引張ではなく)圧縮も受けている場合は、複合材のせん断強度が高まることが確認されています。その原因は、マトリックスと繊維間の摩擦です。 せん断強度は、圧縮応力に比例すると見なされ、次のように計算されます:(1) S 12 = σ 12 m + 〈 − σ 22 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqaHdpWCdaqhaaWcbaGa aGymaiaaikdaaeaacaWGTbaaaOGaey4kaSYaaaWaaeaacqGHsislcq aHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLPmIaayPkJaGa ciiDaiaacggacaGGUbGaeqy1dygaaa@498D@ 図 2. 摩擦角 ϕ は、軸に対してさまざまな角度 θ (例: 30 ∘ , 45 ∘ , 60 ∘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaaG imamaaCaaaleqabaGaeSigI8gaaOGaaiilaiaaisdacaaI1aWaaWba aSqabeaacqWIyiYBaaGccaGGSaGaaGOnaiaaicdadaahaaWcbeqaai ablIHiVbaaaaa@417F@ など)で圧縮試験を行うことでフィッティングできます。 図 3. σ 12 m , σ 13 m , σ 23 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamyBaaaakiaacYcacqaHdpWCdaqh aaWcbaGaaGymaiaaiodaaeaacaWGTbaaaOGaaiilaiabeo8aZnaaDa aaleaacaaIYaGaaG4maaqaaiaad2gaaaaaaa@4478@ は、3方向のマトリックスせん断試験から得ることができます。 S d e l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGKbGaamyzaiaadYgaaeqaaaaa@39BE@ は、剥離基準のスケールファクターです。これは、実験で剥離破壊を損傷領域と相関付けるための複合材剥離実験データによってフィッティングできます。 /FAIL/PUCK Puck破壊では、次の2タイプの破壊が考慮されます。 繊維破壊: 繊維が引張強度または圧縮強度の限界に達することにより、複合材が破壊します。 繊維間破壊(IFF): 繊維マトリックスの亀裂が原因で、複合材が破壊します。 損傷基準 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ の場合は、破壊なし。 ここで、 D = M a x ( e f ( t e n s i l e ) , e f ( c o m p r e s s i o n ) , e f ( M o d e A ) , e f ( M o d e B ) , e f ( M o d e C ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakiaacIcacaWG0bGaamyzaiaad6gacaWGZbGaamyAaiaadY gacaWGLbGaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGa aiikaiaadogacaWGVbGaamyBaiaadchacaWGYbGaamyzaiaadohaca WGZbGaamyAaiaad+gacaWGUbGaaiykaiaacYcacaWGLbWaaSbaaSqa aiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwgacaWGbb GaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGaaiikaiaa d2eacaWGVbGaamizaiaadwgacaWGcbGaaiykaiaacYcacaWGLbWaaS baaSqaaiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwga caWGdbGaaiykaaGaayjkaiaawMcaaaaa@6DD7@ 繊維部破壊 引張繊維破壊モード: σ 11 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH+aGpcaaI Waaaaa@3F79@ e f ( t e n s i l e ) = σ 11 σ 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamiDaiaadwga caWGUbGaam4CaiaadMgacaWGSbGaamyzaaGaayjkaiaawMcaaiabg2 da9maalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqa aiabeo8aZnaaDaaaleaacaaIXaaabaGaamiDaaaaaaaaaa@4C2A@ 圧縮繊維破壊モード: σ 11 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH8aapcaaI Waaaaa@3F75@ e f ( c o m p r e s s i o n ) = | σ 11 | σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaam4yaiaad+ga caWGTbGaamiCaiaadkhacaWGLbGaam4CaiaadohacaWGPbGaam4Bai aad6gaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaaemGabaGaeq4W dm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOGaay5bSlaawIa7aaqaai abeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaaaa@530F@ 繊維間破壊(IFF) 2 モードA( σ 22 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH+aGpcaaI Waaaaa@3F7B@ の場合): 図 4. e f ( M o d e A ) = 1 σ ¯ 12 [ ( σ ¯ 12 σ 2 t − p 12 + ) 2 σ 22 2 + σ 12 2 + p 12 + σ 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadgeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacuaHdpWCgaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaa aOWaamWaaeaadaGcaaqaamaabmaabaWaaSaaaeaacuaHdpWCgaqeam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqaHdpWCdaqhaaWcbaGa aGOmaaqaaiaadshaaaaaaOGaeyOeI0IaamiCamaaDaaaleaacaaIXa GaaGOmaaqaaiabgUcaRaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGcdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHRaWkcaWGWb Waa0baaSqaaiaaigdacaaIYaaabaGaey4kaScaaOGaeq4Wdm3aaSba aSqaaiaaikdacaaIYaaabeaaaOGaay5waiaaw2faaaaa@68DA@ モードC( σ 22 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH8aapcaaI Waaaaa@3F77@ の場合): 図 5. e f ( M o d e C ) = [ ( σ 12 2 ( 1 + p 22 − ) σ ¯ 12 ) 2 + ( σ 22 σ 2 c ) 2 ] ( σ 2 c − σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadoeaaiaawIcacaGLPaaacqGH9aqpdaWadiqaam aabmGabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqa aaGcbaGaaGOmaiaacIcacaaIXaGaey4kaSIaamiCamaaDaaaleaaca aIYaGaaGOmaaqaaiabgkHiTaaakiaacMcacuaHdpWCgaqeamaaBaaa leaacaaIXaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaey4kaSYaaeWaceaadaWcaaqaaiabeo8aZnaaBaaa leaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaqhaaWcbaGaaGOmaa qaaiaadogaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGccaGLBbGaayzxaaWaaeWaceaadaWcaaqaaiabeo8aZnaaDaaale aacaaIYaaabaGaam4yaaaaaOqaaiabgkHiTiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaaaa@69A4@ モードB: 図 6. e f ( M o d e B ) = 1 σ ¯ 12 ( σ 12 2 + ( p 12 − σ 22 ) 2 + p 12 − σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadkeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacuaHdpWCgaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaa aOWaaeWaceaadaGcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaa qaaiaaikdaaaGccqGHRaWkdaqadiqaaiaadchadaqhaaWcbaGaaGym aiaaikdaaeaacqGHsislaaGccqaHdpWCdaWgaaWcbaWaaSbaaWqaai aaikdacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaabeaakiabgUcaRiaadchadaqhaaWcbaGaaGymaiaaik daaeaacqGHsislaaGccqaHdpWCdaWgaaWcbaWaaSbaaWqaaiaaikda caaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaaa@5F9F@ 繊維間破壊では、モードAは横繊維方向(繊維方向に対して直角)の引張がかかった状態の破壊を示し、この場合、せん断荷重によって破壊限界が引き下げられる可能性があります。 横繊維方向の圧縮がかかっている場合、最初は圧縮が増大すると、複合材のせん断荷重も増大します(モードB)。圧縮が増大し続けると、せん断荷重は減少に転じます(モードC)。 入力パラメータ 繊維破断破壊の場合、繊維強度 σ 1 t , σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIXaaabaGaam4yaaaaaaa@3DE7@ は、繊維方向の引張および圧縮の複合材試験から得られます。 繊維間破壊の場合、強度 σ 2 t , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaaaaa@3DE9@ は、横繊維方向の引張および圧縮の複合材試験から得られます。 せん断強度 σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3974@ は、純せん断試験( σ 2 = σ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaigda aeqaaOGaeyypa0JaaGimaaaa@3E25@ )によって得られます。 σ 2 t , σ 2 c , σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaakiaacYcacuaHdpWCgaqeamaaBaaaleaaca aIXaGaaGOmaaqabaaaaa@4221@ を使用して、モードBとモードCの p 22 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIYaGaaGOmaaqaaiabgkHiTaaaaaa@397D@ と p 12 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIYaGaaGOmaaqaaiabgkHiTaaaaaa@397D@ が求まります。 σ 2 t , σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiqbeo8aZzaaraWaaSba aSqaaiaaigdacaaIYaaabeaaaaa@3DD3@ と、横繊維方向の追加の引張-せん断試験により、 p 12 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaaaaa@3971@ が求まります。横繊維方向の追加の引張-せん断試験では、等しい引張-せん断( σ 22 = σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DD3@ による)荷重を使用できます。 これで、下記のように σ 22 − σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DBA@ 平面内の破壊曲線を得ることができます。 図 7. σ 22 − σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DBA@ 平面内のIFF破壊曲線 p 12 + , p 12 − , p 22 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiaacYcacaWGWbWaa0ba aSqaaiaaigdacaaIYaaabaGaeyOeI0caaOGaaiilaiaadchadaqhaa WcbaGaaGOmaiaaikdaaeaacqGHsislaaaaaa@41F2@ パラメータについて3。カーボンファイバー複合材の場合は p 12 + = 0.35 , p 12 − = 0.3 , p 22 − = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiabg2da9iaaicdacaGG UaGaaG4maiaaiwdacaGGSaGaamiCamaaDaaaleaacaaIXaGaaGOmaa qaaiabgkHiTaaakiabg2da9iaaicdacaGGUaGaaG4maiaacYcacaWG WbWaa0baaSqaaiaaikdacaaIYaaabaGaeyOeI0caaOGaeyypa0JaaG imaiaac6cacaaIYaaaaa@4C47@ を使用し、グラスファイバー複合材の場合は p 12 + = 0.3 , p 12 − = 0.25 , p 22 − = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiabg2da9iaaicdacaGG UaGaaG4maiaacYcacaWGWbWaa0baaSqaaiaaigdacaaIYaaabaGaey OeI0caaOGaeyypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcacaWG WbWaa0baaSqaaiaaikdacaaIYaaabaGaeyOeI0caaOGaeyypa0JaaG imaiaac6cacaaIYaaaaa@4C46@ を使用します。 /FAIL/LAD_DAMA /FAIL/LAD_DAMAを使用して、複合材層間の剥離を表現します(マトリックス内の損傷の伝播)。仮想インターフェース(接触)を介して層同士が結合されていると想定します。 図 8. たとえば、下記のように複合材に荷重がかかっている場合、引張 σ と方向3の変位 δ は次の曲線で示されているとおりです。 図 9. 引張と変位の関係を示す曲線の下の面積は、剥離による吸収エネルギーを表します。これは、損傷インターフェースのひずみエネルギーとも呼ばれます。このひずみエネルギーによる破壊を以下に示します。ここでは3つの剥離モードが考慮されています:(2) E D = 1 2 [ 〈 σ 33 〉 2 K 3 ( 1 − d 3 ) + 〈 − σ 33 〉 2 K 3 + σ 32 2 K 2 ( 1 − d 2 ) + σ 31 2 K 1 ( 1 − d 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGebaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaWcaaqaamaaamaabaGaeq4Wdm3aaSbaaSqaaiaaio dacaaIZaaabeaaaOGaayzkJiaawQYiamaaCaaaleqabaGaaGOmaaaa aOqaaiaadUeadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaaigdacq GHsislcaWGKbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaa aiabgUcaRmaalaaabaWaaaWaaeaacqGHsislcqaHdpWCdaWgaaWcba GaaG4maiaaiodaaeqaaaGccaGLPmIaayPkJaWaaWbaaSqabeaacaaI YaaaaaGcbaGaam4samaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkda Wcaaqaaiabeo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaGcdaahaaWc beqaaiaaikdaaaaakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaOWaae WaaeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaaaacqGHRaWkdaWcaaqaaiabeo8aZnaaBaaaleaaca aIZaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaWGlbWa aSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0Iaamizam aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGL Dbaaaaa@6B73@ ここで、 σ 33 , σ 32 , σ 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaiodacaaIZaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aG4maiaaikdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIZaGaaG ymaaqabaaaaa@41A2@ は、以下の3つの剥離挙動モードにおける応力です。 図 10. 剥離のひずみエネルギー E D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGebaabeaaaaa@37B5@ により、これらの3モードについて、損傷エネルギー解放率とも呼ばれる熱力学的な力(仮想インターフェースの接触力)を計算できます: モデルI(DCB試験体5) Y d 3 = ∂ E D ∂ d 3 | σ = c s t = 1 2 〈 σ 33 〉 2 K 3 ( 1 − d 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIZaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaamaaamaa baGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQ YiamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUeadaWgaaWcbaGaaG4m aaqabaGcdaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaio daaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@5869@ モデルII(ENF試験体5) Y d 2 = ∂ E D ∂ d 2 | σ = c s t = 1 2 σ 32 2 K 2 ( 1 − d 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIYaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiabeo8a ZnaaBaaaleaacaaIZaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaa aakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaaIXaGa eyOeI0IaamizamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@5694@ モデルIII Y d 1 = ∂ E D ∂ d 1 | σ = c s t = 1 2 σ 31 2 K 1 ( 1 − d 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIXaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiabeo8a ZnaaBaaaleaacaaIZaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaa aakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXaGa eyOeI0IaamizamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@568F@ ここで、 K 3 , K 2 , K 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIZaaabeaakiaacYcacaWGlbWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaadUeadaWgaaWcbaGaaGymaaqabaaaaa@3C92@ は、仮想インターフェースの剛性(層間剛性とも呼ばれます)です。これらの値は次のように計算できます:(3) K 3 = 2 E 33 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiaadweadaWg aaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFE@ K 2 = 2 G 23 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGOmaiaadEeadaWg aaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFE@ K 1 = 2 G 13 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadEeadaWg aaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFC@ ここで、 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39B0@ 仮想インターフェースの板厚。これは、層厚の5分の1と想定できます。 G 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 、 G 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 、 E 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 上層または下層から。 d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadMgaaeqaaaaa@3ABA@ 損傷変数( i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ =1,2,3)。 この値の範囲は0~1です。この値は、複合材が Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達すると累積し始めます。 モードIの例で、方向3での引張時において、最初、 d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaaaaa@37C8@ は、熱力学的な力 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ が Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達するまで常に0のままになります(左の図)。 図 11. Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達すると、損傷変数は増加し始め、1に達すると、 d 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaakiabg2da9iaaigdaaaa@3993@ となります(この時点の熱力学的な力 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ は臨界損傷 Y c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaam4yaaqabaaaaa@3C3A@ になります)。複合材は完全に剥離したと見なすことができ、複合材を直ちに削除するか、応力を小さくすることができます。Radiossでは、オプション τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabes8a0naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3F0D@ を使用して指数関数的な応力減少をシミュレートし、 Y c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaam4yaaqabaaaaa@3C3A@ における応力は σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadsgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamOCaaqa baGccaGGPaaaaa@3C58@ となります(損傷時の応力減少)。 熱力学的な力 Y d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaWGPbaabeaaaSqa baaaaa@3D61@ と d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbaabeaaaaa@37F9@ との関係は次のとおりです: d ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgw MiZkaaigdaaaa@3960@ の場合、 d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaaigdaaaa@38A0@ d < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgY da8iaaigdaaaa@389E@ の場合、 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DF@ は Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DF@ の関数(損傷評価則):(4) d = w ( Y ) = 〈 Y − Y 0 〉 Y c − Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadsgacqGH9aqpcaWG3bGaaiikaiaadMfacaGGPaGaeyypa0Za aSaaaeaadaaadiqaamaakaaabaGaamywaaWcbeaakiabgkHiTmaaka aabaGaamywamaaBaaaleaacaaIWaaabeaaaeqaaaGccaGLPmIaayPk JaaabaWaaOaaaeaacaWGzbWaaSbaaSqaaiaadogaaeqaaaqabaGccq GHsisldaGcaaqaaiaadMfadaWgaaWcbaGaaGimaaqabaaabeaaaaaa aa@4AED@ Y = Y d 3 + γ 1 Y d 1 + γ 2 Y d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaey ypa0JaamywamaaBaaaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWc beaakiabgUcaRiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadMfada WgaaWcbaGaamizamaaBaaameaacaaIXaaabeaaaSqabaGccqGHRaWk cqaHZoWzdaWgaaWcbaGaaGOmaaqabaGccaWGzbWaaSbaaSqaaiaads gadaWgaaadbaGaaGOmaaqabaaaleqaaaaa@4909@ ここで、 Y d i | t = sup Y d i | τ ≤ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbWaaS baaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleqaaOWaaqqaceaa daWgaaWcbaGaamiDaaqabaGccqGH9aqpciGGZbGaaiyDaiaacchaca WGzbWaaSbaaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleqaaOWa aqqaceaadaWgaaWcbaGaeqiXdqNaeyizImQaamiDaaqabaaakiaawE a7aaGaay5bSdaaaa@4A9D@ ここで、 γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaaGymaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaaikda aeqaaaaa@3D3E@ は他の2つの剥離モードを考慮するためのスケールファクターです。これは実験によって検証できます(DCBとENFの試験体試験5)。 モードIの例では、これは方向3における純粋剥離であるため、 γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaaGymaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaaikda aeqaaaaa@3D3E@ は0にすることができ、 Y = Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaey ypa0JaamywamaaBaaaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWc beaaaaa@3C33@ となります。 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ と d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaaaaa@37C8@ の関係は次のようになります: 図 12. 損傷変数はどれだけの速度で増加するのでしょうか?損傷速度 d ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca aaaa@36E9@ (損傷評価則とも呼ばれます)は次のように計算されます: d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaaigdaaaa@38A0@ であれば、 d ˙ = c o n s t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca Gaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshacaGGUaaaaa@3D61@ d < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgY da8iaaigdaaaa@389E@ であれば、 d ˙ = k a [ 1 − exp ( − a 〈 w ( Y ) − d 〉 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca Gaeyypa0ZaaSaaaeaacaWGRbaabaGaamyyaaaadaWadaqaaiaaigda cqGHsislciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadggada aadaqaaiaadEhadaqadaqaaiaadMfaaiaawIcacaGLPaaacqGHsisl caWGKbaacaGLPmIaayPkJaaacaGLOaGaayzkaaaacaGLBbGaayzxaa aaaa@4AAF@ k a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGRbaabaGaamyyaaaaaaa@37DD@ は最大損傷率で、破壊現象の最小継続時間を意味します。これの逆数 a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaam4Aaaaaaaa@37DD@ は特性時間と呼ばれ、1次元の引張試験によって得ることができます。 7 図 13. 複合材損傷の最小時間 Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3856@ を求めるための異なる応力による引張サンプルから、 σ − Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey OeI0IaeuiLdqKaamiDaaaa@3B06@ 曲線は、特性時間 a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaam4Aaaaaaaa@37DD@ に対応する垂直漸近線となります。 図 14. パラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ および k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ によって損傷評価則が決定されます。たとえば、定数パラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ (ここでは a = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbGaeyypa0JaaGymaaaa@3B5E@ )を使用した場合、 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ の値が小さくなるほど、複合材破壊の脆性は高くなります。 図 15. 定数パラメータ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ (ここでは k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbGaeyypa0JaaGymaaaa@3B5E@ )を使用した場合、 a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ の値が大きくなるほど、複合材破壊の脆性は高くなります。 図 16. /FAIL/CHANG Chang-Chang破壊では、次の2つの主要破壊モードが考慮されます。 繊維モード: 引張時の繊維破断または圧縮時の繊維座屈が原因で、複合材が破壊します。 マトリックスモード: 引張時または圧縮時のマトリックス破壊が原因で、複合材が破壊します。 この破壊基準はシェル要素専用です。 損傷基準 D = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebGaeyypa0JaaGymaaaa@3B41@ の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ の場合は、破壊なし。 ここで、 D = M a x ( e f 2 , e c 2 , e m 2 , e d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakmaaCaaaleqabaGaaGOmaaaakiaacYcacaWGLbWaaSbaaS qaaiaadogaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaadwga daWgaaWcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGSa GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaaaa@4A0D@ 。 繊維破損 引張繊維モード σ 11 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOpa4JaaGim aaaa@3DE9@ e f 2 = ( σ 11 σ 1 t ) 2 +β ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG0baa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi abek7aInaabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaaGymaiaaikdaae qaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@5256@ 圧縮繊維モード σ 11 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyipaWJaaGim aaaa@3DE5@ e c 2 = ( σ 11 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGJbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWGJbaa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@463B@ マトリックス亀裂 引張マトリックスモード σ 22 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOpa4JaaGim aaaa@3DE9@ e m 2 = ( σ 22 σ 2 t ) 2 + ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGTbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaikdaaeaacaWG0baa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaykW7caaMb8UaaGjcVlaayIW7daqadaqaamaalaaabaGaeq4Wdm3a aSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiqbeo8aZzaaraWaaSbaaS qaaiaaigdacaaIYaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaaaa@56F6@ 圧縮マトリックスモード σ 22 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyipaWJaaGim aaaa@3DE5@ e d 2 = ( σ 22 2 σ ¯ 12 ) 2 +[ ( σ 2 c 2 σ ¯ 12 ) 2 −1 ] σ 22 σ 2 c + ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaaGOmaiqbeo8aZzaaraWaaSbaaSqaaiaaigda caaIYaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa GccqGHRaWkdaWadaqaamaabmaabaWaaSaaaeaacqaHdpWCdaqhaaWc baGaaGOmaaqaaiaadogaaaaakeaacaaIYaGafq4WdmNbaebadaWgaa WcbaGaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaigdaaiaawUfacaGLDbaadaWcaaqaai abeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaqh aaWcbaGaaGOmaaqaaiaadogaaaaaaOGaey4kaSYaaeWaaeaadaWcaa qaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacuaHdpWC gaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaaa@6754@ ここで、 方向1 繊維方向。 σ 1 t , σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIXaaabaGaam4yaaaaaaa@3DE7@ 繊維の引張 / 圧縮強度。 σ 2 t , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaaaaa@3DE9@ マトリックス強度。 方向2(方向1に対して垂直)の引張荷重または圧縮荷重。 σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3974@ 複合材プライ平面のせん断強度。 β せん断スケールファクター(実験によって特定できます)。 損傷時の応力減少 損傷基準に達した後: HASHIN: D = M a x ( F 1 , F 2 , F 3 , F 4 ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@478A@ PUCK: D = M a x ( e f ( t e n s i l e ) , e f ( c o m p r e s s i o n ) , e f ( M o d e A ) , e f ( M o d e B ) , e f ( M o d e C ) ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakiaacIcacaWG0bGaamyzaiaad6gacaWGZbGaamyAaiaadY gacaWGLbGaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGa aiikaiaadogacaWGVbGaamyBaiaadchacaWGYbGaamyzaiaadohaca WGZbGaamyAaiaad+gacaWGUbGaaiykaiaacYcacaWGLbWaaSbaaSqa aiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwgacaWGbb GaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGaaiikaiaa d2eacaWGVbGaamizaiaadwgacaWGcbGaaiykaiaacYcacaWGLbWaaS baaSqaaiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwga caWGdbGaaiykaaGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@7058@ LAD_DAMA: d ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgw MiZkaaigdaaaa@3960@ CHANG: D = M a x ( e f 2 , e c 2 , e m 2 , e d 2 ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakmaaCaaaleqabaGaaGOmaaaakiaacYcacaWGLbWaaSbaaS qaaiaadogaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaadwga daWgaaWcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGSa GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@4C8E@ 応力が減少し始め、指数関数を使用することで徐々に減少して、数値的不安定が回避されます。(5) σ ( t ) = σ d ( t r ) ⋅ f ( t ) = σ d ( t r ) ⋅ exp ( − t − t r τ max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHdp GaaiikaiaadshacaGGPaGaeyypa0JaaC4WdmaaBaaaleaacaWGKbaa beaakiaacIcacaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiykaiabgw SixlGacAgaciGGOaGaamiDaiaacMcaaeaacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaeyypa0JaaC4WdmaaBaaaleaaca WGKbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiyk aiabgwSixlGacwgacaGG4bGaaiiCamaabmGabaGaeyOeI0YaaSaaae aacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGYbaabeaaaOqaaiab es8a0naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaaaOGaayjkai aawMcaaaaaaa@620C@ ここで、 t ≥ t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaGPaVlaayIW7caWG0bGaeyyzImRaamiDamaaBaaaleaacaWGYbaa beaaaaa@41CD@ τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ オプションは、損傷時に応力がどれだけ緩やかに減少するかを制御します。 図 17. ここで、 σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaC4WdmaaBaaaleaacaWGKbaabeaakmaabmGabaGaamiDamaaBaaa leaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@3FF5@ 損傷が D ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey yzImRaaGymaaaa@3AB2@ に達したときの応力成分。 t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3AD3@ σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaC4WdmaaBaaaleaacaWGKbaabeaakmaabmGabaGaamiDamaaBaaa leaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@3FF5@ の時間。 τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ 動的緩和の時間。 τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ の値が大きいほど、損傷時の応力減少が緩やかになります。通常、これには10~20時間ステップを要します。 参考文献
/FAIL/HASHIN HASHIN破壊では、次の2つの主要破壊モードが考慮されます。 繊維モード:引張時の繊維破断または圧縮時の繊維座屈が原因で、複合材が破壊します。したがって、/FAIL/HASHINでは、引張 / せん断繊維モード、圧縮繊維モード、およびクラッシュモードは繊維モードです。方向1が繊維方向である場合、平面23が繊維モードの主な破壊平面となります。 マトリックスモード: 繊維からのマトリックス亀裂が原因で、複合材が破壊します。破壊マトリックスモード(またはせん断破壊マトリックスモード)と剥離モードはどちらもマトリックスモードです。マトリックスモードの破壊平面は繊維と平行であり、応力 σ 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395B@ はこのモードでは考慮されません。 図 1. 一方向薄層モデルの繊維モードとマトリックスモード 一方向薄層モデル1内の繊維は、1方向のみに沿っており、繊維薄層モデル内の繊維は2方向に沿っています。 一方向薄層モデル 繊維薄層モデル 損傷基準 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ 、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ の場合は、破壊なし。 ここで、 D = M a x ( F 1 , F 2 , F 3 , F 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaaaa@4509@ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ 、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ の場合は、破壊なし。 ここで、 D = M a x ( F 1 , F 2 , F 3 , F 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaaaa@4509@ 引張 / せん断繊維モード F 1 = ( 〈 σ 11 〉 σ 1 t ) 2 + ( σ 12 2 + σ 13 2 σ 12 f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGymaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaamOzaaaakmaa CaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@5538@ F 1 = ( 〈 σ 11 〉 σ 1 t ) 2 + ( σ 12 2 + σ 13 2 σ a f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGymaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaadggaaeaacaWGMbaaaOWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@54A7@ F 2 = ( 〈 σ 22 〉 σ 2 t ) 2 + ( σ 12 2 + σ 23 2 σ b f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc cqGHRaWkcqaHdpWCdaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaaaa GcbaGaeq4Wdm3aa0baaSqaaiaadkgaaeaacaWGMbaaaOWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@54AD@ ここで、 σ a f = σ 12 f , σ b f = σ 12 f σ 2 t σ 1 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaqhaaWcbaGaamyyaaqaaiaadAgaaaGccqGH9aqpcqaH dpWCdaqhaaWcbaGaaGymaiaaikdaaeaacaWGMbaaaOGaaGzaVlaays W7caGGSaGaaGjcVlaaywW7caaMb8Uaeq4Wdm3aa0baaSqaaiaadkga aeaacaWGMbaaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaaigdacaaIYa aabaGaamOzaaaakmaalaaabaGaeq4Wdm3aa0baaSqaaiaaikdaaeaa caWG0baaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG0baaaa aaaaa@5AE6@ 圧縮繊維モード F 2 = ( 〈 σ a 〉 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaaIYaaabeaakiabg2da9maabmaabaWaaSaa aeaadaaadaqaaiabeo8aZnaaBaaaleaacaWGHbaabeaaaOGaayzkJi aawQYiaaqaaiabeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaMe8oaaa@48FE@ ここで、 σ a = − σ 11 + 〈 − σ 22 + σ 33 2 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaGjbVlabeo8aZnaaBaaaleaacaWGHbaabeaakiabg2da9iabgkHi Tiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaaMb8 +aaaWaaeaacqGHsisldaWcaaqaaiabeo8aZnaaBaaaleaacaaIYaGa aGOmaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaae qaaaGcbaGaaGOmaaaaaiaawMYicaGLQmcaaaa@515F@ F 3 = ( 〈 σ a 〉 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIZaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaWGHbaabeaaaOGaayzkJiaawQYiaaqaai abeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaaaa@4388@ ここで、 σ a = − σ 11 + 〈 − σ 33 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadggaaeqaaOGaeyypa0JaeyOeI0Iaeq4Wdm3aaSbaaSqa aiaaigdacaaIXaaabeaakiabgUcaRiaaygW7daaadaqaaiabgkHiTi abeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGLQmca aaa@46D3@ F 4 = ( 〈 σ b 〉 σ 2 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaaI0aaabeaakiabg2da9maabmaabaWaaSaa aeaadaaadaqaaiabeo8aZnaaBaaaleaacaWGIbaabeaaaOGaayzkJi aawQYiaaqaaiabeo8aZnaaDaaaleaacaaIYaaabaGaam4yaaaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@476B@ ここで、 σ b = − σ 22 + 〈 − σ 33 〉 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaadkgaaeqaaOGaeyypa0JaeyOeI0Iaeq4W dm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaaygW7daaada qaaiabgkHiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaa wMYicaGLQmcaaaa@4AB6@ クラッシュモード F 3 = ( 〈 p 〉 σ c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIZaaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiaadchaaiaawMYicaGLQmcaaeaacqaHdpWCdaWgaaWcbaGaam4yaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@40E2@ ここで、 p = − σ 11 + σ 22 + σ 33 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4m aaaaaaa@45C2@ F 5 = ( 〈 p 〉 σ c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI1aaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiaadchaaiaawMYicaGLQmcaaeaacqaHdpWCdaWgaaWcbaGaam4yaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@40E4@ ここで、 p = − σ 11 + σ 22 + σ 33 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4m aaaaaaa@45C2@ せん断破壊マトリックスモード F 6 = ( σ 12 σ 12 m ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI2aaabeaakiabg2da9maabmaabaWaaSaaaeaacqaHdpWC daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaai aaigdacaaIYaaabaGaamyBaaaaaaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaaaa@4312@ 破壊マトリックスモード F 4 = ( 〈 σ 22 〉 σ 2 t ) 2 + ( σ 23 S 23 ) 2 + ( σ 12 S 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI0aaabeaakiabg2da9maabmaabaWaaSaaaeaadaaadaqa aiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQm caaeaacqaHdpWCdaqhaaWcbaGaaGOmaaqaaiaadshaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWG tbWaaSbaaSqaaiaaikdacaaIZaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGaeq4W dm3aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaaa@56F7@ ここで、 S 12 = σ 12 m + 〈 − σ 22 〉 tan ϕ S 23 = σ 23 m + 〈 − σ 22 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaGOmaaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaacaWGtbWaaSbaaSqaai aaikdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaaleaacaaIYaGa aG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgkHiTiabeo8aZn aaBaaaleaacaaIYaGaaGOmaaqabaaakiaawMYicaGLQmcaciGG0bGa aiyyaiaac6gacqaHvpGzaaaa@5D2F@ 剥離モード F 5 = S d e l 2 [ ( 〈 σ 33 〉 σ 3 t ) 2 + ( σ 23 S ˜ 23 ) 2 + ( σ 13 S 13 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI1aaabeaakiabg2da9iaadofadaqhaaWcbaGaamizaiaa dwgacaWGSbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaadaWcaaqaam aaamaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzk JiaawQYiaaqaaiabeo8aZnaaDaaaleaacaaIZaaabaGaamiDaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaO qaaiqadofagaacamaaBaaaleaacaaIYaGaaG4maaqabaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWG tbWaaSbaaSqaaiaaigdacaaIZaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaaaaa@5D97@ ここで、 S 13 = σ 13 m + 〈 − σ 33 〉 tan ϕ S ˜ 23 = σ 23 m + 〈 − σ 33 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaaceWGtbGbaGaadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa ikdacaaIZaaabaGaamyBaaaakiabgUcaRmaaamaabaGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQYiaiGa cshacaGGHbGaaiOBaiabew9aMbaaaa@5D44@ F 7 = S d e l 2 [ ( 〈 σ 33 〉 σ 3 t ) 2 + ( σ 23 S 23 ) 2 + ( σ 13 S 13 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaI3aaabeaakiabg2da9iaadofadaqhaaWcbaGaamizaiaa dwgacaWGSbaabaGaaGOmaaaakmaadmaabaWaaeWaaeaadaWcaaqaam aaamaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzk JiaawQYiaaqaaiabeo8aZnaaDaaaleaacaaIZaaabaGaamiDaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaO qaaiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaaaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaae aacqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4uamaa BaaaleaacaaIXaGaaG4maaqabaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaGccaGLBbGaayzxaaaaaa@5D8A@ ここで、 S 13 = σ 13 m + 〈 − σ 33 〉 tan ϕ S ˜ 23 = σ 23 m + 〈 − σ 33 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGtb WaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaG4maaqaaiaad2gaaaGccqGHRaWkdaaadaqaaiabgk HiTiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawMYicaGL QmcaciGG0bGaaiyyaiaac6gacqaHvpGzaeaaceWGtbGbaGaadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaa ikdacaaIZaaabaGaamyBaaaakiabgUcaRmaaamaabaGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQYiaiGa cshacaGGHbGaaiOBaiabew9aMbaaaa@5D44@ 注: 〈 a 〉 = { a i f a > 0 0 i f a < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaaadaqaaiaadggaaiaawMYicaGLQmcacqGH9aqpdaGabaqaauaa beqaceaaaeaacaWGHbGaaGjbVlaaysW7caWGPbGaamOzaiaaysW7ca WGHbGaeyOpa4JaaGimaaqaaiaaicdacaaMe8UaaGjbVlaadMgacaWG MbGaaGjbVlaadggacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@5187@ /FAIL/HASHINでは、材料強度 σ 1 t , σ 2 t , σ 3 t , σ 1 c , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaamiDaaaakiaacYcacqaHdpWCdaqhaaWcbaGaaG4maa qaaiaadshaaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG JbaaaOGaaiilaiabeo8aZnaaDaaaleaacaaIYaaabaGaam4yaaaaaa a@4AF4@ は、複合材の引張 / 圧縮試験から得られます。 破砕強度 σ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaaaa@38CD@ と繊維せん断強度 σ 12 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamOzaaaaaaa@3A48@ は、準-静的パンチせん断試験(QS-PST)から得ることができます。6 サポートスパン径対パンチ径比率(SPR)からの破砕強度 σ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaaaa@38CD@ は0であり、SPRからの繊維せん断強度 σ 12 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamOzaaaaaaa@3A48@ は1.1です。 ϕ はクーロン摩擦角です。複合材が(引張ではなく)圧縮も受けている場合は、複合材のせん断強度が高まることが確認されています。その原因は、マトリックスと繊維間の摩擦です。 せん断強度は、圧縮応力に比例すると見なされ、次のように計算されます:(1) S 12 = σ 12 m + 〈 − σ 22 〉 tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqaHdpWCdaqhaaWcbaGa aGymaiaaikdaaeaacaWGTbaaaOGaey4kaSYaaaWaaeaacqGHsislcq aHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLPmIaayPkJaGa ciiDaiaacggacaGGUbGaeqy1dygaaa@498D@ 図 2. 摩擦角 ϕ は、軸に対してさまざまな角度 θ (例: 30 ∘ , 45 ∘ , 60 ∘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaaG imamaaCaaaleqabaGaeSigI8gaaOGaaiilaiaaisdacaaI1aWaaWba aSqabeaacqWIyiYBaaGccaGGSaGaaGOnaiaaicdadaahaaWcbeqaai ablIHiVbaaaaa@417F@ など)で圧縮試験を行うことでフィッティングできます。 図 3. σ 12 m , σ 13 m , σ 23 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdacaaIYaaabaGaamyBaaaakiaacYcacqaHdpWCdaqh aaWcbaGaaGymaiaaiodaaeaacaWGTbaaaOGaaiilaiabeo8aZnaaDa aaleaacaaIYaGaaG4maaqaaiaad2gaaaaaaa@4478@ は、3方向のマトリックスせん断試験から得ることができます。 S d e l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGKbGaamyzaiaadYgaaeqaaaaa@39BE@ は、剥離基準のスケールファクターです。これは、実験で剥離破壊を損傷領域と相関付けるための複合材剥離実験データによってフィッティングできます。
/FAIL/PUCK Puck破壊では、次の2タイプの破壊が考慮されます。 繊維破壊: 繊維が引張強度または圧縮強度の限界に達することにより、複合材が破壊します。 繊維間破壊(IFF): 繊維マトリックスの亀裂が原因で、複合材が破壊します。 損傷基準 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebaaaa@3980@ =1の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ の場合は、破壊なし。 ここで、 D = M a x ( e f ( t e n s i l e ) , e f ( c o m p r e s s i o n ) , e f ( M o d e A ) , e f ( M o d e B ) , e f ( M o d e C ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakiaacIcacaWG0bGaamyzaiaad6gacaWGZbGaamyAaiaadY gacaWGLbGaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGa aiikaiaadogacaWGVbGaamyBaiaadchacaWGYbGaamyzaiaadohaca WGZbGaamyAaiaad+gacaWGUbGaaiykaiaacYcacaWGLbWaaSbaaSqa aiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwgacaWGbb GaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGaaiikaiaa d2eacaWGVbGaamizaiaadwgacaWGcbGaaiykaiaacYcacaWGLbWaaS baaSqaaiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwga caWGdbGaaiykaaGaayjkaiaawMcaaaaa@6DD7@ 繊維部破壊 引張繊維破壊モード: σ 11 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH+aGpcaaI Waaaaa@3F79@ e f ( t e n s i l e ) = σ 11 σ 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamiDaiaadwga caWGUbGaam4CaiaadMgacaWGSbGaamyzaaGaayjkaiaawMcaaiabg2 da9maalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqa aiabeo8aZnaaDaaaleaacaaIXaaabaGaamiDaaaaaaaaaa@4C2A@ 圧縮繊維破壊モード: σ 11 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH8aapcaaI Waaaaa@3F75@ e f ( c o m p r e s s i o n ) = | σ 11 | σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaam4yaiaad+ga caWGTbGaamiCaiaadkhacaWGLbGaam4CaiaadohacaWGPbGaam4Bai aad6gaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaaemGabaGaeq4W dm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOGaay5bSlaawIa7aaqaai abeo8aZnaaDaaaleaacaaIXaaabaGaam4yaaaaaaaaaa@530F@ 繊維間破壊(IFF) 2 モードA( σ 22 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH+aGpcaaI Waaaaa@3F7B@ の場合): 図 4. e f ( M o d e A ) = 1 σ ¯ 12 [ ( σ ¯ 12 σ 2 t − p 12 + ) 2 σ 22 2 + σ 12 2 + p 12 + σ 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadgeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacuaHdpWCgaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaa aOWaamWaaeaadaGcaaqaamaabmaabaWaaSaaaeaacuaHdpWCgaqeam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqaHdpWCdaqhaaWcbaGa aGOmaaqaaiaadshaaaaaaOGaeyOeI0IaamiCamaaDaaaleaacaaIXa GaaGOmaaqaaiabgUcaRaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGcdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHRaWkcaWGWb Waa0baaSqaaiaaigdacaaIYaaabaGaey4kaScaaOGaeq4Wdm3aaSba aSqaaiaaikdacaaIYaaabeaaaOGaay5waiaaw2faaaaa@68DA@ モードC( σ 22 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH8aapcaaI Waaaaa@3F77@ の場合): 図 5. e f ( M o d e C ) = [ ( σ 12 2 ( 1 + p 22 − ) σ ¯ 12 ) 2 + ( σ 22 σ 2 c ) 2 ] ( σ 2 c − σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadoeaaiaawIcacaGLPaaacqGH9aqpdaWadiqaam aabmGabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqa aaGcbaGaaGOmaiaacIcacaaIXaGaey4kaSIaamiCamaaDaaaleaaca aIYaGaaGOmaaqaaiabgkHiTaaakiaacMcacuaHdpWCgaqeamaaBaaa leaacaaIXaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaey4kaSYaaeWaceaadaWcaaqaaiabeo8aZnaaBaaa leaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaqhaaWcbaGaaGOmaa qaaiaadogaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGccaGLBbGaayzxaaWaaeWaceaadaWcaaqaaiabeo8aZnaaDaaale aacaaIYaaabaGaam4yaaaaaOqaaiabgkHiTiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaaaa@69A4@ モードB: 図 6. e f ( M o d e B ) = 1 σ ¯ 12 ( σ 12 2 + ( p 12 − σ 22 ) 2 + p 12 − σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaabmaabaGaamytaiaad+ga caWGKbGaamyzaiaadkeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacuaHdpWCgaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaa aOWaaeWaceaadaGcaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaa qaaiaaikdaaaGccqGHRaWkdaqadiqaaiaadchadaqhaaWcbaGaaGym aiaaikdaaeaacqGHsislaaGccqaHdpWCdaWgaaWcbaWaaSbaaWqaai aaikdacaaIYaaabeaaaSqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaabeaakiabgUcaRiaadchadaqhaaWcbaGaaGymaiaaik daaeaacqGHsislaaGccqaHdpWCdaWgaaWcbaWaaSbaaWqaaiaaikda caaIYaaabeaaaSqabaaakiaawIcacaGLPaaaaaa@5F9F@ 繊維間破壊では、モードAは横繊維方向(繊維方向に対して直角)の引張がかかった状態の破壊を示し、この場合、せん断荷重によって破壊限界が引き下げられる可能性があります。 横繊維方向の圧縮がかかっている場合、最初は圧縮が増大すると、複合材のせん断荷重も増大します(モードB)。圧縮が増大し続けると、せん断荷重は減少に転じます(モードC)。 入力パラメータ 繊維破断破壊の場合、繊維強度 σ 1 t , σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIXaaabaGaam4yaaaaaaa@3DE7@ は、繊維方向の引張および圧縮の複合材試験から得られます。 繊維間破壊の場合、強度 σ 2 t , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaaaaa@3DE9@ は、横繊維方向の引張および圧縮の複合材試験から得られます。 せん断強度 σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3974@ は、純せん断試験( σ 2 = σ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaigda aeqaaOGaeyypa0JaaGimaaaa@3E25@ )によって得られます。 σ 2 t , σ 2 c , σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaakiaacYcacuaHdpWCgaqeamaaBaaaleaaca aIXaGaaGOmaaqabaaaaa@4221@ を使用して、モードBとモードCの p 22 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIYaGaaGOmaaqaaiabgkHiTaaaaaa@397D@ と p 12 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIYaGaaGOmaaqaaiabgkHiTaaaaaa@397D@ が求まります。 σ 2 t , σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiqbeo8aZzaaraWaaSba aSqaaiaaigdacaaIYaaabeaaaaa@3DD3@ と、横繊維方向の追加の引張-せん断試験により、 p 12 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaaaaa@3971@ が求まります。横繊維方向の追加の引張-せん断試験では、等しい引張-せん断( σ 22 = σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DD3@ による)荷重を使用できます。 これで、下記のように σ 22 − σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DBA@ 平面内の破壊曲線を得ることができます。 図 7. σ 22 − σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaaaaa@3DBA@ 平面内のIFF破壊曲線 p 12 + , p 12 − , p 22 − MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiaacYcacaWGWbWaa0ba aSqaaiaaigdacaaIYaaabaGaeyOeI0caaOGaaiilaiaadchadaqhaa WcbaGaaGOmaiaaikdaaeaacqGHsislaaaaaa@41F2@ パラメータについて3。カーボンファイバー複合材の場合は p 12 + = 0.35 , p 12 − = 0.3 , p 22 − = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiabg2da9iaaicdacaGG UaGaaG4maiaaiwdacaGGSaGaamiCamaaDaaaleaacaaIXaGaaGOmaa qaaiabgkHiTaaakiabg2da9iaaicdacaGGUaGaaG4maiaacYcacaWG WbWaa0baaSqaaiaaikdacaaIYaaabaGaeyOeI0caaOGaeyypa0JaaG imaiaac6cacaaIYaaaaa@4C47@ を使用し、グラスファイバー複合材の場合は p 12 + = 0.3 , p 12 − = 0.25 , p 22 − = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaaIXaGaaGOmaaqaaiabgUcaRaaakiabg2da9iaaicdacaGG UaGaaG4maiaacYcacaWGWbWaa0baaSqaaiaaigdacaaIYaaabaGaey OeI0caaOGaeyypa0JaaGimaiaac6cacaaIYaGaaGynaiaacYcacaWG WbWaa0baaSqaaiaaikdacaaIYaaabaGaeyOeI0caaOGaeyypa0JaaG imaiaac6cacaaIYaaaaa@4C46@ を使用します。
/FAIL/LAD_DAMA /FAIL/LAD_DAMAを使用して、複合材層間の剥離を表現します(マトリックス内の損傷の伝播)。仮想インターフェース(接触)を介して層同士が結合されていると想定します。 図 8. たとえば、下記のように複合材に荷重がかかっている場合、引張 σ と方向3の変位 δ は次の曲線で示されているとおりです。 図 9. 引張と変位の関係を示す曲線の下の面積は、剥離による吸収エネルギーを表します。これは、損傷インターフェースのひずみエネルギーとも呼ばれます。このひずみエネルギーによる破壊を以下に示します。ここでは3つの剥離モードが考慮されています:(2) E D = 1 2 [ 〈 σ 33 〉 2 K 3 ( 1 − d 3 ) + 〈 − σ 33 〉 2 K 3 + σ 32 2 K 2 ( 1 − d 2 ) + σ 31 2 K 1 ( 1 − d 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGebaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaWcaaqaamaaamaabaGaeq4Wdm3aaSbaaSqaaiaaio dacaaIZaaabeaaaOGaayzkJiaawQYiamaaCaaaleqabaGaaGOmaaaa aOqaaiaadUeadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaaigdacq GHsislcaWGKbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaa aiabgUcaRmaalaaabaWaaaWaaeaacqGHsislcqaHdpWCdaWgaaWcba GaaG4maiaaiodaaeqaaaGccaGLPmIaayPkJaWaaWbaaSqabeaacaaI YaaaaaGcbaGaam4samaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkda Wcaaqaaiabeo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaGcdaahaaWc beqaaiaaikdaaaaakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaOWaae WaaeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaaaacqGHRaWkdaWcaaqaaiabeo8aZnaaBaaaleaaca aIZaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaWGlbWa aSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0Iaamizam aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGL Dbaaaaa@6B73@ ここで、 σ 33 , σ 32 , σ 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaiodacaaIZaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aG4maiaaikdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIZaGaaG ymaaqabaaaaa@41A2@ は、以下の3つの剥離挙動モードにおける応力です。 図 10. 剥離のひずみエネルギー E D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGebaabeaaaaa@37B5@ により、これらの3モードについて、損傷エネルギー解放率とも呼ばれる熱力学的な力(仮想インターフェースの接触力)を計算できます: モデルI(DCB試験体5) Y d 3 = ∂ E D ∂ d 3 | σ = c s t = 1 2 〈 σ 33 〉 2 K 3 ( 1 − d 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIZaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaamaaamaa baGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaaaOGaayzkJiaawQ YiamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUeadaWgaaWcbaGaaG4m aaqabaGcdaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaio daaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@5869@ モデルII(ENF試験体5) Y d 2 = ∂ E D ∂ d 2 | σ = c s t = 1 2 σ 32 2 K 2 ( 1 − d 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIYaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiabeo8a ZnaaBaaaleaacaaIZaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaa aakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaaIXaGa eyOeI0IaamizamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@5694@ モデルIII Y d 1 = ∂ E D ∂ d 1 | σ = c s t = 1 2 σ 31 2 K 1 ( 1 − d 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabg2da9maa eiaabaWaaSaaaeaacqGHciITcaWGfbWaaSbaaSqaaiaadseaaeqaaa GcbaGaeyOaIyRaamizamaaBaaaleaacaaIXaaabeaaaaaakiaawIa7 amaaBaaaleaacqaHdpWCcqGH9aqpcaWGJbGaam4CaiaadshaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiabeo8a ZnaaBaaaleaacaaIZaGaaGymaaqabaGcdaahaaWcbeqaaiaaikdaaa aakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXaGa eyOeI0IaamizamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@568F@ ここで、 K 3 , K 2 , K 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIZaaabeaakiaacYcacaWGlbWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaadUeadaWgaaWcbaGaaGymaaqabaaaaa@3C92@ は、仮想インターフェースの剛性(層間剛性とも呼ばれます)です。これらの値は次のように計算できます:(3) K 3 = 2 E 33 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiaadweadaWg aaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFE@ K 2 = 2 G 23 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGOmaiaadEeadaWg aaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFE@ K 1 = 2 G 13 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadEeadaWg aaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamiDaaaaaaa@3CFC@ ここで、 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39B0@ 仮想インターフェースの板厚。これは、層厚の5分の1と想定できます。 G 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 、 G 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 、 E 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3867@ 上層または下層から。 d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadMgaaeqaaaaa@3ABA@ 損傷変数( i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ =1,2,3)。 この値の範囲は0~1です。この値は、複合材が Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達すると累積し始めます。 モードIの例で、方向3での引張時において、最初、 d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaaaaa@37C8@ は、熱力学的な力 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ が Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達するまで常に0のままになります(左の図)。 図 11. Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@3C0C@ に達すると、損傷変数は増加し始め、1に達すると、 d 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaakiabg2da9iaaigdaaaa@3993@ となります(この時点の熱力学的な力 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ は臨界損傷 Y c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaam4yaaqabaaaaa@3C3A@ になります)。複合材は完全に剥離したと見なすことができ、複合材を直ちに削除するか、応力を小さくすることができます。Radiossでは、オプション τ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabes8a0naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3F0D@ を使用して指数関数的な応力減少をシミュレートし、 Y c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaam4yaaqabaaaaa@3C3A@ における応力は σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadsgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamOCaaqa baGccaGGPaaaaa@3C58@ となります(損傷時の応力減少)。 熱力学的な力 Y d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaWGPbaabeaaaSqa baaaaa@3D61@ と d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbaabeaaaaa@37F9@ との関係は次のとおりです: d ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgw MiZkaaigdaaaa@3960@ の場合、 d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaaigdaaaa@38A0@ d < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgY da8iaaigdaaaa@389E@ の場合、 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DF@ は Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DF@ の関数(損傷評価則):(4) d = w ( Y ) = 〈 Y − Y 0 〉 Y c − Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadsgacqGH9aqpcaWG3bGaaiikaiaadMfacaGGPaGaeyypa0Za aSaaaeaadaaadiqaamaakaaabaGaamywaaWcbeaakiabgkHiTmaaka aabaGaamywamaaBaaaleaacaaIWaaabeaaaeqaaaGccaGLPmIaayPk JaaabaWaaOaaaeaacaWGzbWaaSbaaSqaaiaadogaaeqaaaqabaGccq GHsisldaGcaaqaaiaadMfadaWgaaWcbaGaaGimaaqabaaabeaaaaaa aa@4AED@ Y = Y d 3 + γ 1 Y d 1 + γ 2 Y d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaey ypa0JaamywamaaBaaaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWc beaakiabgUcaRiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadMfada WgaaWcbaGaamizamaaBaaameaacaaIXaaabeaaaSqabaGccqGHRaWk cqaHZoWzdaWgaaWcbaGaaGOmaaqabaGccaWGzbWaaSbaaSqaaiaads gadaWgaaadbaGaaGOmaaqabaaaleqaaaaa@4909@ ここで、 Y d i | t = sup Y d i | τ ≤ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbWaaS baaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleqaaOWaaqqaceaa daWgaaWcbaGaamiDaaqabaGccqGH9aqpciGGZbGaaiyDaiaacchaca WGzbWaaSbaaSqaaiaadsgadaWgaaadbaGaamyAaaqabaaaleqaaOWa aqqaceaadaWgaaWcbaGaeqiXdqNaeyizImQaamiDaaqabaaakiaawE a7aaGaay5bSdaaaa@4A9D@ ここで、 γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaaGymaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaaikda aeqaaaaa@3D3E@ は他の2つの剥離モードを考慮するためのスケールファクターです。これは実験によって検証できます(DCBとENFの試験体試験5)。 モードIの例では、これは方向3における純粋剥離であるため、 γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHZoWzda WgaaWcbaGaaGymaaqabaGccaGGSaGaeq4SdC2aaSbaaSqaaiaaikda aeqaaaaa@3D3E@ は0にすることができ、 Y = Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaey ypa0JaamywamaaBaaaleaacaWGKbWaaSbaaWqaaiaaiodaaeqaaaWc beaaaaa@3C33@ となります。 Y d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadMfadaWgaaWcbaGaamizamaaBaaameaacaaIZaaabeaaaSqa baaaaa@3D30@ と d 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaaabeaaaaa@37C8@ の関係は次のようになります: 図 12. 損傷変数はどれだけの速度で増加するのでしょうか?損傷速度 d ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca aaaa@36E9@ (損傷評価則とも呼ばれます)は次のように計算されます: d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaaigdaaaa@38A0@ であれば、 d ˙ = c o n s t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca Gaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshacaGGUaaaaa@3D61@ d < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgY da8iaaigdaaaa@389E@ であれば、 d ˙ = k a [ 1 − exp ( − a 〈 w ( Y ) − d 〉 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaca Gaeyypa0ZaaSaaaeaacaWGRbaabaGaamyyaaaadaWadaqaaiaaigda cqGHsislciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadggada aadaqaaiaadEhadaqadaqaaiaadMfaaiaawIcacaGLPaaacqGHsisl caWGKbaacaGLPmIaayPkJaaacaGLOaGaayzkaaaacaGLBbGaayzxaa aaaa@4AAF@ k a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGRbaabaGaamyyaaaaaaa@37DD@ は最大損傷率で、破壊現象の最小継続時間を意味します。これの逆数 a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaam4Aaaaaaaa@37DD@ は特性時間と呼ばれ、1次元の引張試験によって得ることができます。 7 図 13. 複合材損傷の最小時間 Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3856@ を求めるための異なる応力による引張サンプルから、 σ − Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey OeI0IaeuiLdqKaamiDaaaa@3B06@ 曲線は、特性時間 a k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaam4Aaaaaaaa@37DD@ に対応する垂直漸近線となります。 図 14. パラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ および k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ によって損傷評価則が決定されます。たとえば、定数パラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ (ここでは a = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbGaeyypa0JaaGymaaaa@3B5E@ )を使用した場合、 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ の値が小さくなるほど、複合材破壊の脆性は高くなります。 図 15. 定数パラメータ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ (ここでは k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbGaeyypa0JaaGymaaaa@3B5E@ )を使用した場合、 a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGHbaaaa@399D@ の値が大きくなるほど、複合材破壊の脆性は高くなります。 図 16.
/FAIL/CHANG Chang-Chang破壊では、次の2つの主要破壊モードが考慮されます。 繊維モード: 引張時の繊維破断または圧縮時の繊維座屈が原因で、複合材が破壊します。 マトリックスモード: 引張時または圧縮時のマトリックス破壊が原因で、複合材が破壊します。 この破壊基準はシェル要素専用です。 損傷基準 D = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGebGaeyypa0JaaGymaaaa@3B41@ の場合は、破壊。 0 ≤ D < 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadseacqGH8aapcaaIXaaaaa@3AEE@ の場合は、破壊なし。 ここで、 D = M a x ( e f 2 , e c 2 , e m 2 , e d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakmaaCaaaleqabaGaaGOmaaaakiaacYcacaWGLbWaaSbaaS qaaiaadogaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaadwga daWgaaWcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGSa GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaaaa@4A0D@ 。 繊維破損 引張繊維モード σ 11 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOpa4JaaGim aaaa@3DE9@ e f 2 = ( σ 11 σ 1 t ) 2 +β ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGMbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWG0baa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi abek7aInaabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaaGymaiaaikdaae qaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@5256@ 圧縮繊維モード σ 11 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyipaWJaaGim aaaa@3DE5@ e c 2 = ( σ 11 σ 1 c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGJbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaWGJbaa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@463B@ マトリックス亀裂 引張マトリックスモード σ 22 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOpa4JaaGim aaaa@3DE9@ e m 2 = ( σ 22 σ 2 t ) 2 + ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGTbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaaikdaaeaacaWG0baa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaykW7caaMb8UaaGjcVlaayIW7daqadaqaamaalaaabaGaeq4Wdm3a aSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiqbeo8aZzaaraWaaSbaaS qaaiaaigdacaaIYaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaaaa@56F6@ 圧縮マトリックスモード σ 22 < 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyipaWJaaGim aaaa@3DE5@ e d 2 = ( σ 22 2 σ ¯ 12 ) 2 +[ ( σ 2 c 2 σ ¯ 12 ) 2 −1 ] σ 22 σ 2 c + ( σ 12 σ ¯ 12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa kiabg2da9maabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaaGOmaiqbeo8aZzaaraWaaSbaaSqaaiaaigda caaIYaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa GccqGHRaWkdaWadaqaamaabmaabaWaaSaaaeaacqaHdpWCdaqhaaWc baGaaGOmaaqaaiaadogaaaaakeaacaaIYaGafq4WdmNbaebadaWgaa WcbaGaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaigdaaiaawUfacaGLDbaadaWcaaqaai abeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaqh aaWcbaGaaGOmaaqaaiaadogaaaaaaOGaey4kaSYaaeWaaeaadaWcaa qaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacuaHdpWC gaqeamaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaaa@6754@ ここで、 方向1 繊維方向。 σ 1 t , σ 1 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaigdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIXaaabaGaam4yaaaaaaa@3DE7@ 繊維の引張 / 圧縮強度。 σ 2 t , σ 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaikdaaeaacaWG0baaaOGaaiilaiabeo8aZnaaDaaaleaa caaIYaaabaGaam4yaaaaaaa@3DE9@ マトリックス強度。 方向2(方向1に対して垂直)の引張荷重または圧縮荷重。 σ ¯ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3974@ 複合材プライ平面のせん断強度。 β せん断スケールファクター(実験によって特定できます)。
損傷時の応力減少 損傷基準に達した後: HASHIN: D = M a x ( F 1 , F 2 , F 3 , F 4 ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiaacYcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadAeadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamOramaaBaaaleaa caaI0aaabeaaaOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@478A@ PUCK: D = M a x ( e f ( t e n s i l e ) , e f ( c o m p r e s s i o n ) , e f ( M o d e A ) , e f ( M o d e B ) , e f ( M o d e C ) ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakiaacIcacaWG0bGaamyzaiaad6gacaWGZbGaamyAaiaadY gacaWGLbGaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGa aiikaiaadogacaWGVbGaamyBaiaadchacaWGYbGaamyzaiaadohaca WGZbGaamyAaiaad+gacaWGUbGaaiykaiaacYcacaWGLbWaaSbaaSqa aiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwgacaWGbb GaaiykaiaacYcacaWGLbWaaSbaaSqaaiaadAgaaeqaaOGaaiikaiaa d2eacaWGVbGaamizaiaadwgacaWGcbGaaiykaiaacYcacaWGLbWaaS baaSqaaiaadAgaaeqaaOGaaiikaiaad2eacaWGVbGaamizaiaadwga caWGdbGaaiykaaGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@7058@ LAD_DAMA: d ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgw MiZkaaigdaaaa@3960@ CHANG: D = M a x ( e f 2 , e c 2 , e m 2 , e d 2 ) ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaad2eacaWGHbGaamiEamaabmaabaGaamyzamaaBaaaleaacaWG MbaabeaakmaaCaaaleqabaGaaGOmaaaakiaacYcacaWGLbWaaSbaaS qaaiaadogaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaadwga daWgaaWcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGSa GaamyzamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@4C8E@ 応力が減少し始め、指数関数を使用することで徐々に減少して、数値的不安定が回避されます。(5) σ ( t ) = σ d ( t r ) ⋅ f ( t ) = σ d ( t r ) ⋅ exp ( − t − t r τ max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHdp GaaiikaiaadshacaGGPaGaeyypa0JaaC4WdmaaBaaaleaacaWGKbaa beaakiaacIcacaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiykaiabgw SixlGacAgaciGGOaGaamiDaiaacMcaaeaacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaeyypa0JaaC4WdmaaBaaaleaaca WGKbaabeaakiaacIcacaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiyk aiabgwSixlGacwgacaGG4bGaaiiCamaabmGabaGaeyOeI0YaaSaaae aacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGYbaabeaaaOqaaiab es8a0naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaaaOGaayjkai aawMcaaaaaaa@620C@ ここで、 t ≥ t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaGPaVlaayIW7caWG0bGaeyyzImRaamiDamaaBaaaleaacaWGYbaa beaaaaa@41CD@ τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ オプションは、損傷時に応力がどれだけ緩やかに減少するかを制御します。 図 17. ここで、 σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaC4WdmaaBaaaleaacaWGKbaabeaakmaabmGabaGaamiDamaaBaaa leaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@3FF5@ 損傷が D ≥ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey yzImRaaGymaaaa@3AB2@ に達したときの応力成分。 t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3AD3@ σ d ( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaC4WdmaaBaaaleaacaWGKbaabeaakmaabmGabaGaamiDamaaBaaa leaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@3FF5@ の時間。 τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ 動的緩和の時間。 τ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3ABC@ の値が大きいほど、損傷時の応力減少が緩やかになります。通常、これには10~20時間ステップを要します。 参考文献