/EOS/OSBORNE

ブロックフォーマットキーワード R.K. OsborneによるOsborneの状態方程式(”2次状態方程式”とも呼ばれる)を記述します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/EOS/OSBORNE/mat_ID/unit_ID
eos_title
A1 A2 B0 B1 B2
C0 C1 D0 P0  

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子

(整数、最大10桁)

 
eos_title 状態方程式のタイトル

(文字、最大100文字)

 
A1 Osborneパラメータ

(実数)

[Pa2] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaWGqbGaamyyamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaaaa @3A96@
A2 Osborneパラメータ

(実数)

[Pa2] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaWGqbGaamyyamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaaaa @3A96@
B0 Osborneパラメータ

(実数)

[Pa]
B1 Osborneパラメータ

(実数)

[Pa]
B2 Osborneパラメータ

(実数)

[Pa]
C0 Osborneパラメータ

(実数)

 
C1 Osborneパラメータ

(実数)

 
D0 Osborneパラメータ

(実数)

[Pa]
P0 初期圧力

(実数)

[Pa]

パラメータ一覧

各材料について単位系{g, cm, µs}でのパラメータを一覧で示します:
材料 ρ0 A1 A2 B0 B1 B2 C0 C1 D0
ベリリウム 1.845 0.9512 0.3453 0.9269 2.9484 0.5080 0.5644 0.6204 0.8
ホウ素 2.34 1.8212 4.3509 0.3764 0.3287 1.0801 0.5531 0.6346 .25
黒鉛 2.25 0.1608 0.1619 0.8866 0.5140 1.4377 0.5398 0.5960 0.5
マグネシウム 1.735 0.5665 0.3343 2.2178 0.8710 0.4814 0.4163 0.5390 1.5
チタン 4.51 1.9428 0.6591 1.8090 2.6115 1.7984 0.4003 0.5182 1.8
1.00 0.000384 0.001756 0.01312 0.06265 0.21330 0.5132 0.6761 0.02
プレキシガラス 1.18 0.006199 0.015491 0.14756 0.05619 .050504 0.5575 0.6151 0.1
ポリスチレン 1.04 0.038807 0.043646 0.77420 0.03610 0.46048 0.5443 0.6071 0.5
ポリスチレン 0.913 0.007841 0.009766 0.19257 0.10257 0.31592 0.5748 0.6230 0.1
マイカルタ 1.39 0.016164 0.023579 0.34261 0.15107 0.43434 0.0540 0.0612 0.15
シラスティック 1.43 0.004794 0.04684 0.33969 0.02377 0.50767 0.4925 0.5721 0.3
アルミニウム 2.702 1.1867 0.7630 3.4448 1.5451 0.96430 0.43382 0.54873 1.5
Copper 8.90 4.9578 3.6884 7.4727 11.519 5.5251 0.39493 0.52883 3.6
7.86 7.78 31.18 9.591 15.676 4.634 0.3984 0.5306 9.0
タングステン 19.17 21.67419 14.93338 10.195827 12.263234 9.6051515 0.33388437 0.48248861 7.0
Steel 7.9 4.9578323 3.6883726 7.4727361 11.519148 5.521138 0.39492613 0.52883412 3.6
ウラン 2.806 2.4562457 3.6883726 7.47361 11.519148 5.521138 0.39492613 0.52883412 0.6

例(アルミニウム)

コメント

  1. この状態方程式はR.K. Osborneによるものです:(1)
    P(μ,E)=A1μ+A2μ|μ|+(B0+B1μ+B2μ2)E+(C0+C1μ)E2E+D0 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaciiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabeY7aTjabgUcaRiaadgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeqiVd02aaqWaa8aabaWdbiabeY7aTbGaay5bSlaawIa7aiabgUcaRmaabmaapaqaa8qacaWGcbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRiaadkeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeqiVd0Maey4kaSIaamOqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqaH8oqBpaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiaadweacqGHRaWkdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkcaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabeY7aTbGaayjkaiaawMcaaiaadweapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamyraiabgUcaRiaadseapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaaaa@682A@
    ここで、
    E MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@36D6@
    内部エネルギーを初期体積で割った値
    E=EintV0=ρ0e MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyraiabg2da9maalaaapaqaa8qacaWGfbWdamaaBaaaleaapeGaamyAaiaad6gacaWG0baapaqabaaakeaapeGaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaGcpeGaeyypa0JaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadwgaaaa@430A@
    μ
    ρρ01 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaaSaaa8aabaWdbiabeg8aYbWdaeaapeGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaaak8qacqGHsislcaaIXaaaaa@3CB0@
    A1,A2,B0,B1,B2,C0,C1,D0 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaamOqa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaamOqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamira8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4A73@
    定数パラメータ
  2. 初期圧力は、 P(0,E0)=P0 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaciiuamaabmaapaqaa8qacaaIWaGaaiilaiaadweapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3EDB@ となるように E0 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37EA@ を計算するために使用されます。
  3. Radiossにより流体力学的圧力の計算に用いられ、右記の材料則と適合性のある状態方程式。
    • /MAT/LAW3 (HYDPLA)
    • /MAT/LAW4 (HYD_JCOOK)
    • /MAT/LAW6 (HYDROまたはHYD_VISC)
    • /MAT/LAW10 (DPRAG1)
    • /MAT/LAW12 (3D_COMP)
    • /MAT/LAW49 (STEINB)
    • /MAT/LAW102 (DPRAG2)
    • /MAT/LAW103 (HENSEL-SPITTEL)