/EOS/TABULATED

ブロックフォーマットキーワード 表形式の状態方程式 P = A ( µ ) + B ( µ ) E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaWGbbGaaiikaiaadwlacaGGPaGaey4kaSIa amOqaiaacIcacaWG1cGaaiykaiaadweaaaa@40B6@ を記述します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/EOS/IDEAL-GAS/mat_ID/unit_ID
eos_title
fct_IDA   XscaleA FscaleA    
fct_IDB   XscaleB FscaleB    
E0 Psh      

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位の識別子。

(整数、最大10桁)

 
eos_title 状態方程式のタイトル

(文字、最大100文字)

 
fct_IDA 関数Aの関数識別子

デフォルト = 0(整数)

 
XscaleA 関数A( μ )の横軸のスケールファクター

デフォルト = 1.0(実数)

 
FscaleA 関数A( μ )の縦軸のスケールファクター

デフォルト = 1.0(実数)

[ Pa ]
fct_IDB 初期圧力

(実数)

 
XscaleB 関数B( μ )の横軸のスケールファクター

デフォルト = 1.0(実数)

 
FscaleB 関数B( μ )の縦軸のスケールファクター

デフォルト = 1.0(実数)

 
E0 Eの初期値

(実数)

[ Pa ]
Psh 圧力シフト

(実数)

[ Pa ]

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/BEGIN
Sample_for_air
      2022         0
                   g                  mm                  ms
                   g                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/HYDRO/7/1
AIR
#              RHO_I               RHO_0
             1.22e-6                   0 
#                Knu                Pmin
              1.5E-2                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/EOS/TABULATED/7
Ideal Gas using tabulated EoS P(µ)=A(µ)+B(µ)*E ; units {g,mm,ms} ; P(0)=0.1 MPa
#   A_func                       XscaleA             FscaleA
         0                             0                   0
#   B_func                       XscaleB             FscaleB
      1002                      1.000000            1.000000
#                 E0                 PSH                
                0.25                 0.1             
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1002
EOS FUNCT - B(µ) = (GAMMA-1).(1+µ) ; where gamma=1.4 ; units {g,mm,ms}
#                  X                   Y
                  -1                 0.0                                                            
                   0                 0.4                                                           
                   9                 4.0 
                  99                40.0
                9999              4000.0                                                                              
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. 表形式の状態方程式は次の式で定義されます:(1)
    P = A ( µ ) + B ( µ ) E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaWGbbGaaiikaiaadwlacaGGPaGaey4kaSIa amOqaiaacIcacaWG1cGaaiykaiaadweaaaa@40B6@
    ここで、
    μ
    は次のように定義されます: µ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadwlacqGH9aqpdaWcaaWdaeaapeGaeqyWdihapaqaa8qacqaH bpGCpaWaaSbaaSqaa8qacaaIWaaapaqabaaaaOWdbiabgkHiTiaaig daaaa@3F60@
    E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadweaaaa@3746@
    ρ 0 e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadwgaaaa@3A16@ (SI単位J/m3またはPa)です。
    A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadweaaaa@3746@ および B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadweaaaa@3746@
    はユーザー定義の関数です。
  2. 次のようなオプションのスケールファクターが導入されています:(2)
    P = F s c a l e A . A ( µ X s c a l e A ) + F s c a l e B . B ( µ X s c a l e B ) E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaWGgbGaam4CaiaadogacaWGHbGaamiBaiaa dwgadaWgaaWcbaGaamyqaaqabaGccaGGUaGaamyqaiaacIcadaWcaa qaaiaadwlaaeaacaWGybGaam4CaiaadogacaWGHbGaamiBaiaadwga daWgaaWcbaGaamyqaaqabaaaaOGaaiykaiabgUcaRiaadAeacaWGZb Gaam4yaiaadggacaWGSbGaamyzamaaBaaaleaacaWGcbaabeaakiaa c6cacaWGcbGaaiikamaalaaabaGaamyTaaqaaiaadIfacaWGZbGaam 4yaiaadggacaWGSbGaamyzamaaBaaaleaacaWGcbaabeaaaaGccaGG PaGaamyraaaa@5C00@

    P μ , E = γ 1 1 + μ E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaacqGH9aqpdaqadaWdaeaapeGaeq4SdCMaeyOeI0IaaGymaa GaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0ga caGLOaGaayzkaaGaamyraaaa@47EC@ ここで、 γ = C p C v MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo7aNjabg2da9maalaaapaqaa8qacaWGdbWdamaaBaaaleaa peGaamiCaaWdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaWG2b aapaqabaaaaaaa@3DA6@ C p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeapaWaaSbaaSqaa8qacaWGWbaapaqabaaaaa@3893@ および C v MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeapaWaaSbaaSqaaiaadAhaaeqaaaaa@387A@ は定数パラメータです。

    したがって、一定の関数の特殊なケースを定義する/EOS/IDEAL-GAS-VT(体積温度)を使用して、同じ状態方程式を作成することができます。(3)
    C p ( T ) = γ r γ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeapaWaaSbaaSqaa8qacaWGWbaapaqabaGccaGGOaGaamiv aiaacMcacqGH9aqpdaWcaaqaaiabeo7aNjaadkhaaeaacqaHZoWzcq GHsislcaaIXaaaaaaa@41D2@
  3. Radiossにより流体力学的圧力の計算に用いられ、右記の材料則と適合性のある状態方程式。
    • /MAT/LAW3 (HYDPLA)
    • /MAT/LAW4 (HYD_JCOOK)
    • /MAT/LAW6 (HYDROまたはHYD_VISC)
    • /MAT/LAW10 (DPRAG1)
    • /MAT/LAW12 (3D_COMP)
    • /MAT/LAW49 (STEINB)
    • /MAT/LAW102 (DPRAG2)
    • /MAT/LAW103 (HENSEL-SPITTEL)