/MAT/LAW117

ブロックフォーマットキーワード この材料則は、法線方向と接線方向の2モードにおける延性接着材料の構成関係を表します。この材料則では、材料の弾性および破壊応答をモデル化します。

この材料は、ソリッド六面体要素(/BRICK)とTYPE43プロパティ(粘着ソリッド)のみに適合します。この材料は、破壊モデルとの適合性はありません。すべての損傷と破壊は、この材料内で直接定義されます。


図 1. 混合モードモデルを表す図:

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW117/mat_ID/unit_ID
mat_title
ρi                
EN ET Imass Idel Irupt      
Fct_TN Fct_TT TN TT Fscale_x  
GIC GIIC EXP_B EXP_BK Gamma

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位識別子

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρi 初期密度。

(実数)

[kgm3]
EN 粘着要素の平面に対して垂直方向の剛性。

(実数)

[Pam] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadaWcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
ET 粘着要素の平面内の剛性。

(実数)

[Pam] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadaWcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
Imass 質量計算フラグ
= 1(デフォルト)
要素質量は密度と平均面積を使用して計算されます。
= 2
要素質量は密度と体積を使用して計算される

(整数)

 
Idel 要素を削除するための積分点の数を示す破壊フラグ(1~4)。

デフォルト = 1(整数)

 
Irupt 混合モードの変位則のフラグ。
= 1(デフォルト)
べき乗則
= 2
Benzeggage-Kenane

(実数)

 
Fct_TN 法線方向のピーク引張と要素メッシュサイズの関係を示す関数の識別子。

(整数)

 
Fct_TT 接線方向のピーク引張と要素メッシュサイズの関係を示す関数の識別子。

(整数)

 
TN 法線方向のピーク引張(デフォルト = 0)

またはFct_TNの縦軸スケールファクター(デフォルト = 1)

(実数)

[Pa]
TT 接線方向のピーク引張(デフォルト = 0)

またはFct_TTの縦軸スケールファクター(デフォルト = 1)

(実数)

[Pa]
Fscale_x Fct_TNFct_TTの横軸スケールファクター。

デフォルト = 1(実数)

[m]
GIC モードIのエネルギー解放率。

(実数)

[Pa.m] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaadmaabaGaciiuaiaacggacaGGUaGaamyBaaGaay5waiaaw2faaaaa@3BD0@
GIIC モードIIのエネルギー解放率。

(実数)

[Pa.m] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaadmaabaGaciiuaiaacggacaGGUaGaamyBaaGaay5waiaaw2faaaaa@3BD0@
EXP_B 混合モードのべき乗則指数。

デフォルト = 2(実数)

 
EXP_BK 混合モードのBenzeggage-Kenane指数。

(実数)

 
Gamma Benzeggage-Kenane則のGamma指数。

デフォルト = 1(実数)

 

例(結合材料)

コメント

  1. モードIは法線方向であり、モードIIはせん断方向です。 δI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadMeaaeqaaaaa@3895@ は、 δzz MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadQhacaWG6baabeaaaaa@39C6@ 方向に等しい法線方向の分離です。 δII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadMeacaWGjbaabeaaaaa@3964@ は、接線方向の分離と等しくなります( δII=δyz+δzx MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadMeacaWGjbaabeaakiabg2da9maakaaabaGaeqiTdq2aaSbaaSqaaiaadMhacaWG6baabeaakiabgUcaRiabes7aKnaaBaaaleaacaWG6bGaamiEaaqabaaabeaaaaa@430B@ )。混合モードの変位は、δm MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gaaeqaaaaa@38BA@ と表されます。
  2. モードIとモードIIの損傷開始変位は、それぞれ δI0=TNEN MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0baaSqaaiaadMeaaeaacaaIWaaaaOGaeyypa0ZaaSaaaeaacaWGubWaaSbaaSqaaiaad6eaaeqaaaGcbaGaamyraiaad6eaaaaaaa@3DF0@ δII0=TTET MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0baaSqaaiaadMeacaWGjbaabaGaaGimaaaakiabg2da9maalaaabaGaamivamaaBaaaleaacaWGubaabeaaaOqaaiaadweacaWGubaaaaaa@3ECA@ であり、混合モードでは次のとおりです:(1)
    δm0=δI0δII01+β2(δII0)2+(βδI0)2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaaIWaaaaOGaeyypa0JaeqiTdq2aa0baaSqaaiaadMeaaeaacaaIWaaaaOGaeyyXICTaeqiTdq2aa0baaSqaaiaadMeacaWGjbaabaGaaGimaaaakiabgwSixpaakaaabaWaaSaaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaaGcbaWaaeWaaeaacqaH0oazdaqhaaWcbaGaamysaiaadMeaaeaacaaIWaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacqaHYoGycqGHflY1cqaH0oazdaqhaaWcbaGaamysaaqaaiaaicdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaqabaaaaa@5C50@

    ここで、モード混合 β=δIIδI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyypa0ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaadMeaaeqaaaaaaaa@3EC4@ です。

  3. 破壊時の最大変位 δmF MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaWGgbaaaaaa@3985@ は、Irupt=1の場合はべき乗則を使用して計算できます:(2)
    δmF=21+β2δm0ENGICEXP_B+βETGIICEXP_B1EXP_B MathType@MTEF@5@5@+=feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaWGgbaaaOGaeyypa0ZaaSaaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaaIWaaaaaaakiabgwSixpaadmaabaWaaeWaaeaadaWcaaqaaiaadweacaWGobaabaGaam4raiaadMeacaWGdbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaamyraiaadIfacaWGqbGaai4xaiaadkeaaaGccqGHRaWkdaqadaqaamaalaaabaGaeqOSdiMaeyyXICTaamyraiaadsfaaeaacaWGhbGaamysaiaadMeacaWGdbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaamyraiaadIfacaWGqbGaai4xaiaadkeaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTmaabmaabaWaaSaaaeaacaaIXaaabaGaamyraiaadIfacaWGqbGaai4xaiaadkeaaaaacaGLOaGaayzkaaaaaaaa@69FB@
    Irupt =2の場合は、Benzeggage-Kenane則を使用して計算できます:(3)
    δmF=2δm011+β2ENγ+β21+β2ETγ1γGIC+GIICGICβ2ETEN+β2ETEXP_BK MathType@MTEF@5@5@+=feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaWGgbaaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaaIWaaaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaaaakiabgwSixlaadweacaWGobWaaWbaaSqabeaacqaHZoWzaaGccqGHRaWkdaWcaaqaaiabek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiaaigdacqGHRaWkcqaHYoGydaahaaWcbeqaaiaaikdaaaaaaOGaeyyXICTaamyraiaadsfadaahaaWcbeqaaiabeo7aNbaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaeq4SdCgaaaaaaaGccqGHflY1daWadaqaaiaadEeacaWGjbGaam4qaiabgUcaRmaabmaabaGaam4raiaadMeacaWGjbGaam4qaiabgkHiTiaadEeacaWGjbGaam4qaaGaayjkaiaawMcaamaabmaabaWaaSaaaeaacqaHYoGydaahaaWcbeqaaiaaikdaaaGccqGHflY1caWGfbGaamivaaqaaiaadweacaWGobGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaeyyXICTaamyraiaadsfaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGfbGaamiwaiaadcfacaGGFbGaamOqaiaadUeaaaaakiaawUfacaGLDbaaaaa@812A@
  4. GICGIICはそれぞれモードIとモードIIのピーク引張と最大変位の間のエネルギー解放率です。

    GIC=TNδIF2 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadMeacaWGdbGaeyypa0ZaaSaaaeaacaWGubGaamOtaiabgwSixlabes7aKnaaDaaaleaacaWGjbaabaGaamOraaaaaOqaaiaaikdaaaaaaa@4196@ および GIIC=TTδIIF2 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadMeacaWGjbGaam4qaiabg2da9maalaaabaGaamivaiaadsfacqGHflY1cqaH0oazdaqhaaWcbaGaamysaiaadMeaaeaacaWGgbaaaaGcbaGaaGOmaaaaaaa@4338@