/MAT/LAW117

ブロックフォーマットキーワード この材料則は、法線方向と接線方向の2モードにおける延性接着材料の構成関係を表します。この材料則では、材料の弾性および破壊応答をモデル化します。

この材料は、ソリッド六面体要素(/BRICK)とTYPE43プロパティ(粘着ソリッド)のみに適合します。この材料は、破壊モデルとの適合性はありません。すべての損傷と破壊は、この材料内で直接定義されます。


図 1. 混合モードモデルを表す図:

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW117/mat_ID/unit_ID
mat_title
ρ i                
EN ET Imass Idel Irupt      
Fct_TN Fct_TT TN TT Fscale_x  
GIC GIIC EXP_B EXP_BK Gamma

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位識別子

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度。

(実数)

[ kg m 3 ]
EN 粘着要素の平面に対して垂直方向の剛性。

(実数)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
ET 粘着要素の平面内の剛性。

(実数)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
Imass 質量計算フラグ
= 1(デフォルト)
要素質量は密度と平均面積を使用して計算されます。
= 2
要素質量は密度と体積を使用して計算される

(整数)

 
Idel 要素を削除するための積分点の数を示す破壊フラグ(1~4)。

デフォルト = 1(整数)

 
Irupt 混合モードの変位則のフラグ。
= 1(デフォルト)
べき乗則
= 2
Benzeggage-Kenane

(実数)

 
Fct_TN 法線方向のピーク引張と要素メッシュサイズの関係を示す関数の識別子。

(整数)

 
Fct_TT 接線方向のピーク引張と要素メッシュサイズの関係を示す関数の識別子。

(整数)

 
TN 法線方向のピーク引張(デフォルト = 0)

またはFct_TNの縦軸スケールファクター(デフォルト = 1)

(実数)

[ Pa ]
TT 接線方向のピーク引張(デフォルト = 0)

またはFct_TTの縦軸スケールファクター(デフォルト = 1)

(実数)

[ Pa ]
Fscale_x Fct_TNFct_TTの横軸スケールファクター。

デフォルト = 1(実数)

[ m ]
GIC モードIのエネルギー解放率。

(実数)

[ Pa.m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaadmaabaGaciiuaiaacggacaGGUaGaamyBaaGaay5waiaaw2fa aaaa@3BD0@
GIIC モードIIのエネルギー解放率。

(実数)

[ Pa . m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaadmaabaGaciiuaiaacggacaGGUaGaamyBaaGaay5waiaaw2fa aaaa@3BD0@
EXP_B 混合モードのべき乗則指数。

デフォルト = 2(実数)

 
EXP_BK 混合モードのBenzeggage-Kenane指数。

(実数)

 
Gamma Benzeggage-Kenane則のGamma指数。

デフォルト = 1(実数)

 

例(結合材料)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
Units
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW117/1/1
CONNECT MATERIAL
#              RHO_I
              7.8E-6
#                 EN                  ET     Imass      Idel     Irupt
                   5                 1.2         0         1         0
#   Fct_TN    Fct_TT                  TN                  TT            Fscale_x
         0         0                   2                 0.7                   0
#                GIC                GIIC               EXP_B              EXP_BK               Gamma
                   1                1.75                   2                   2                   1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. モードIは法線方向であり、モードIIはせん断方向です。 δ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMeaaeqaaaaa@3895@ は、 δ z z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadQhacaWG6baabeaaaaa@39C6@ 方向に等しい法線方向の分離です。 δ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMeacaWGjbaabeaaaaa@3964@ は、接線方向の分離と等しくなります( δ I I = δ y z + δ z x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMeacaWGjbaabeaakiabg2da9maakaaabaGaeqiTdq2a aSbaaSqaaiaadMhacaWG6baabeaakiabgUcaRiabes7aKnaaBaaale aacaWG6bGaamiEaaqabaaabeaaaaa@430B@ )。混合モードの変位は、 δ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gaaeqaaaaa@38BA@ と表されます。
  2. モードIとモードIIの損傷開始変位は、それぞれ δ I 0 = T N E N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaadMeaaeaacaaIWaaaaOGaeyypa0ZaaSaaaeaacaWGubWa aSbaaSqaaiaad6eaaeqaaaGcbaGaamyraiaad6eaaaaaaa@3DF0@ δ I I 0 = T T E T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaadMeacaWGjbaabaGaaGimaaaakiabg2da9maalaaabaGa amivamaaBaaaleaacaWGubaabeaaaOqaaiaadweacaWGubaaaaaa@3ECA@ であり、混合モードでは次のとおりです:(1)
    δ m 0 = δ I 0 δ I I 0 1 + β 2 ( δ I I 0 ) 2 + ( β δ I 0 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaad2gaaeaacaaIWaaaaOGaeyypa0JaeqiTdq2aa0baaSqa aiaadMeaaeaacaaIWaaaaOGaeyyXICTaeqiTdq2aa0baaSqaaiaadM eacaWGjbaabaGaaGimaaaakiabgwSixpaakaaabaWaaSaaaeaacaaI XaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaaGcbaWaaeWaae aacqaH0oazdaqhaaWcbaGaamysaiaadMeaaeaacaaIWaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacq aHYoGycqGHflY1cqaH0oazdaqhaaWcbaGaamysaaqaaiaaicdaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaqabaaaaa@5C50@

    ここで、モード混合 β = δ I I δ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeaaeqaaaGc baGaeqiTdq2aaSbaaSqaaiaadMeaaeqaaaaaaaa@3EC4@ です。

  3. 破壊時の最大変位 δ m F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaad2gaaeaacaWGgbaaaaaa@3985@ は、Irupt=1の場合はべき乗則を使用して計算できます:(2)
    δ m F = 2 1 + β 2 δ m 0 E N G I C E X P _ B + β E T G I I C E X P _ B 1 E X P _ B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaad2gaaeaacaWGgbaaaOGaeyypa0ZaaSaaaeaacaaIYaWa aeWaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaaabaGaeqiTdq2aa0baaSqaaiaad2gaaeaacaaI WaaaaaaakiabgwSixpaadmaabaWaaeWaaeaadaWcaaqaaiaadweaca WGobaabaGaam4raiaadMeacaWGdbaaaaGaayjkaiaawMcaamaaCaaa leqabaGaamyraiaadIfacaWGqbGaai4xaiaadkeaaaGccqGHRaWkda qadaqaamaalaaabaGaeqOSdiMaeyyXICTaamyraiaadsfaaeaacaWG hbGaamysaiaadMeacaWGdbaaaaGaayjkaiaawMcaamaaCaaaleqaba GaamyraiaadIfacaWGqbGaai4xaiaadkeaaaaakiaawUfacaGLDbaa daahaaWcbeqaaiabgkHiTmaabmaabaWaaSaaaeaacaaIXaaabaGaam yraiaadIfacaWGqbGaai4xaiaadkeaaaaacaGLOaGaayzkaaaaaaaa @69FB@
    Irupt =2の場合は、Benzeggage-Kenane則を使用して計算できます:(3)
    δ m F = 2 δ m 0 1 1 + β 2 E N γ + β 2 1 + β 2 E T γ 1 γ G I C + G I I C G I C β 2 E T E N + β 2 E T E X P _ B K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0 baaSqaaiaad2gaaeaacaWGgbaaaOGaeyypa0ZaaSaaaeaacaaIYaaa baGaeqiTdq2aa0baaSqaaiaad2gaaeaacaaIWaaaaOWaaeWaaeaada WcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaa caaIYaaaaaaakiabgwSixlaadweacaWGobWaaWbaaSqabeaacqaHZo WzaaGccqGHRaWkdaWcaaqaaiabek7aInaaCaaaleqabaGaaGOmaaaa aOqaaiaaigdacqGHRaWkcqaHYoGydaahaaWcbeqaaiaaikdaaaaaaO GaeyyXICTaamyraiaadsfadaahaaWcbeqaaiabeo7aNbaaaOGaayjk aiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaeq4SdCgaaa aaaaGccqGHflY1daWadaqaaiaadEeacaWGjbGaam4qaiabgUcaRmaa bmaabaGaam4raiaadMeacaWGjbGaam4qaiabgkHiTiaadEeacaWGjb Gaam4qaaGaayjkaiaawMcaamaabmaabaWaaSaaaeaacqaHYoGydaah aaWcbeqaaiaaikdaaaGccqGHflY1caWGfbGaamivaaqaaiaadweaca WGobGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaeyyXICTa amyraiaadsfaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGfbGaam iwaiaadcfacaGGFbGaamOqaiaadUeaaaaakiaawUfacaGLDbaaaaa@812A@
  4. GICGIICはそれぞれモードIとモードIIのピーク引張と最大変位の間のエネルギー解放率です。

    G I C = T N δ I F 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadM eacaWGdbGaeyypa0ZaaSaaaeaacaWGubGaamOtaiabgwSixlabes7a KnaaDaaaleaacaWGjbaabaGaamOraaaaaOqaaiaaikdaaaaaaa@4196@ および G I I C = T T δ I I F 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadM eacaWGjbGaam4qaiabg2da9maalaaabaGaamivaiaadsfacqGHflY1 cqaH0oazdaqhaaWcbaGaamysaiaadMeaaeaacaWGgbaaaaGcbaGaaG Omaaaaaaa@4338@