/MAT/LAW116

ブロックフォーマットキーワード 損傷と破壊を伴う混合モードのひずみ速度依存の材料モデルを記述します。

この材料は、ソリッド六面体要素(/BRICK)と粘着ソリッドプロパティ(/PROP/TYPE43 (CONNECT))のみに適合します。
注: どの破壊モデルにも適合しません。すべての損傷と破壊は、この材料内で直接定義されます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW116/mat_ID/unit_ID
mat_title
ρi                
EI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWGjbaabeaaaaa@37BB@ EII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWGjbaabeaaaaa@37BB@ Thick Imass Idel Icrit  
GCI_ini MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa@3C37@ GCI_inf MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa@3C37@ ε˙GI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaam4ramaaBaaameaacaWGjbaabeaaaSqabaaaaa@39A4@ fGI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadEeadaWgaaWcbaGaamysaaqabaaaaa@38A8@    
GCII_ini MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaabeaaaaa@3D05@ GCII_inf MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaabeaaaaa@3D05@ ε˙GII MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaam4ramaaBaaameaacaWGjbGaamysaaqabaaaleqaaaaa@3A72@ fGII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadEeadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@    
σA_I MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ σB_I MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ ε˙I MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamysaaqabaaaaa@38A0@ Iorder_I Ifail_I    
σA_II MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ σB_II MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ ε˙II MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@396E@ Iorder_II Ifail_II    

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位の識別子(オプション)

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρi 初期密度。

(実数)

[kgm3]
EI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWGjbaabeaaaaa@37BB@ 単位長さあたりの法線方向のヤング(剛性)率。

(実数)

[Pam] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadaWcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
EII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWGjbaabeaaaaa@37BB@ 単位長さあたりの接線方向のせん断(剛性)係数。

デフォルト = EII=EI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWGjbGaamysaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaadMeaaeqaaaaa@3B5C@ (実数)

[Pam] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadaWcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
Thick 基準粘着板厚。

(実数)

[m]
Imass 質量計算フラグ
= 1(デフォルト)
要素質量は密度と平均面積を使用して計算されます。
= 2
要素質量は密度と体積を使用して計算される

(整数)

 
Idel 要素を削除するための積分点の数を示す破壊フラグ(1~4)。

デフォルト = 1(整数)

 
Icrit 降伏と損傷の開始フラグ。
= 1(デフォルト)
2次公称応力に基づきます。
= 2
最大公称応力に基づきます。

(整数)

 
GCI_ini MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa@3C37@ モードI(法線方向)の初期臨界エネルギー解放率。

(実数)

[J]
GCI_inf MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa@3C37@ 臨界エネルギー解放率の上限。GCI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaaqabaaaaa@3884@ のひずみ速度依存性を示します。

デフォルト = 0.0(実数)

[J]
ε˙GI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaam4ramaaBaaameaacaWGjbaabeaaaSqabaaaaa@39A4@ GCひずみ速度依存性の参照(下限)ひずみ速度。

GCI_inf>0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadAgaaeqaaOGaeyOpa4JaaGimaaaa@3DFF@ の場合、定義する必要があります。

(実数)

[Hz]
fGI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadEeadaWgaaWcbaGaamysaaqabaaaaa@38A8@ モードIでの破壊前のエネルギー解放率の形状係数。

(実数)

 
GCII_ini MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaabeaaaaa@3D05@ モードII(せん断)の初期臨界エネルギー解放率。

(実数)

[J]
GCII_inf MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaabeaaaaa@3D05@ 臨界エネルギー解放率の上限。GCII MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3952@ のひずみ速度依存性を示します。

デフォルト = 0.0(実数)

[J]
ε˙GII MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaam4ramaaBaaameaacaWGjbGaamysaaqabaaaleqaaaaa@3A72@ GCひずみ速度依存性の参照(下限)ひずみ速度。

GCII_inf>0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGMbaabeaakiabg6da+iaaicdaaaa@3ECD@ の場合、定義する必要があります。

(実数)

[Hz]
fGII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadEeadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@ モードIIでの破壊前のエネルギー解放率の形状係数。

(実数)

 
σA_I MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ モードIでの静的降伏応力。

(実数)

[Pa]
σB_I MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ モードIでのひずみ速度依存の降伏応力項。

(実数)

[Pa]
ε˙I MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamysaaqabaaaaa@38A0@ モードIでの降伏応力速度依存性の参照(下限)ひずみ速度値。

σB_I>0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkeacaGGFbGaamysaaqabaGccqGH+aGpcaaIWaaaaa@3C29@ の場合、定義する必要があります。

(実数)

[Hz]
Iorder_I モードIでのひずみ速度に対する降伏応力依存性の次数。
= 1(デフォルト)
ひずみ速度の線形対数依存性。
= 2
ひずみ速度の2次対数依存性。

(整数)

 
Ifail_I fGI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadEeadaWgaaWcbaGaamysaaqabaaaaa@38A8@ によって定義される破壊基準:
= 1(デフォルト)
破壊エネルギーの比率。
= 2
破壊変位の比率。

(整数)

 
σA_II MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ モードIIでの静的降伏応力。

(実数)

[Pa]
σB_II MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ モードIIでのひずみ速度依存の降伏応力項。

(実数)

[Pa]
ε˙II MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@396E@ モードIIでの降伏応力速度依存性の参照(下限)ひずみ速度値。

σB_II>0 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkeacaGGFbGaamysaiaadMeaaeqaaOGaeyOpa4JaaGimaaaa@3CF8@ の場合、定義する必要があります。

(実数)

[Hz]
Iorder_II モードIIでのひずみ速度の降伏応力依存性の次数。
= 1(デフォルト)
ひずみ速度の線形対数依存性。
= 2
ひずみ速度の2次対数依存性。

(整数)

 
Ifail_II fGII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadEeadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@ によって定義される破壊基準:
= 1(デフォルト)
破壊エネルギーの比率。
= 2
破壊変位の比率。

(整数)

 

コメント

  1. 弾性剛性は次のように定義されます:


    図 1.
    ここで、
    GP
    一定応力下の塑性エネルギー
    GC
    全エネルギー
    i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGPbaaaa@39A5@ ={I,II}
    モードI(法線)とモードII(せん断)
    引張分離則の形状は次のように定義されます:
    • 破壊エネルギーの比率によって定義される破壊基準(Ifail_i=1)(1)
      0fGi=GCi(ε˙eq)GCi(ε˙eq)<1σ(ε˙eq)22GCi(ε˙eq)Ei<1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGhbGaam4qamaaBaaaleaacaWGPbaabeaakiaacIcacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaGccaGGPaaabaGaam4raiaadoeadaWgaaWcbaGaamyAaaqabaGccaGGOaGafqyTduMbaiaadaWgaaWcbaGaamyzaiaadghaaeqaaOGaaiykaaaacqGH8aapcaaIXaGaeyOeI0YaaSaaaeaacqaHdpWCdaqadaqaaiqbew7aLzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGhbGaam4qamaaBaaaleaacaWGPbaabeaakiaacIcacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaGccaGGPaGaamyramaaBaaaleaacaWGPbaabeaaaaGccqGH8aapcaaIXaaaaa@6305@
    • 破壊変位の比率によって定義される破壊基準(Ifail_i=2)(2)
      0fGi=δi2δi1δifδi1<1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamyAaiaaikdaaeqaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaadMgacaaIXaaabeaaaOqaaiabes7aKnaaBaaaleaacaWGPbGaamOzaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamyAaiaaigdaaeqaaaaakiabgYda8iaaigdaaaa@4E30@
  2. 降伏応力は次のように定義されます:
    • Iorder_i=1の場合:(3)
      σ(ε˙eq)=σA_i+σB_i.[max(0,ln(ε˙eqε˙i))] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaeWaaeaacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaaakiaawIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcbaGaamyqaiaac+facaWGPbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGcbGaai4xaiaadMgaaeqaaOGaaiOlamaadmaabaGaciyBaiaacggacaGG4bWaaeWaaeaacaaIWaGaaiilaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew7aLzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOqaaiqbew7aLzaacaWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@5A93@
    • Iorder_i=2の場合:(4)
      σ(ε˙eq)=σA_i+σB_i.[max(0,ln(ε˙eqε˙i))]2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaeWaaeaacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaaakiaawIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcbaGaamyqaiaac+facaWGPbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGcbGaai4xaiaadMgaaeqaaOGaaiOlamaadmaabaGaciyBaiaacggacaGG4bWaaeWaaeaacaaIWaGaaiilaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew7aLzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOqaaiqbew7aLzaacaWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaa@5B7C@

      ここで、 i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。

  3. 相当ひずみ速度は次のように定義されます:(5)
    ε˙eq=Δ˙2I+Δ˙2IIThick MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaaaeaadaGcaaqaaiqbfs5aezaacaWaaWbaaSqabeaacaaIYaaaaOWaaSbaaSqaaiaadMeaaeqaaOGaey4kaSIafuiLdqKbaiaadaahaaWcbeqaaiaaikdaaaGcdaWgaaWcbaGaamysaiaadMeaaeqaaaqabaaakeaacaWGubGaamiAaiaadMgacaWGJbGaam4Aaaaaaaa@47EA@
    ここで、
    Δ˙I MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaiaadaWgaaWcbaGaamysaaqabaaaaa@385F@
    法線速度。
    Δ˙II MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaiaadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@392D@
    せん断速度。
  4. 速度依存の破壊エネルギーは次のように定義されます:(6)
    GCi(ε˙eq)=GCi_ini+(GCi_infGCi_ini).exp(ε˙Giε˙eq) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadoeadaWgaaWcbaGaamyAaaqabaGccaGGOaGafqyTduMbaiaadaWgaaWcbaGaamyzaiaadghaaeqaaOGaaiykaiabg2da9iaadEeacaWGdbWaaSbaaSqaaiaadMgacaGGFbGaamyAaiaad6gacaWGPbaabeaakiabgUcaRmaabmaabaGaam4raiaadoeadaWgaaWcbaGaamyAaiaac+faciGGPbGaaiOBaiaacAgaaeqaaOGaeyOeI0Iaam4raiaadoeadaWgaaWcbaGaamyAaiaac+facaWGPbGaamOBaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiOlaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacuaH1oqzgaGaamaaBaaaleaacaWGhbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaOqaaiqbew7aLzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaaaakiaawIcacaGLPaaaaaa@6316@

    ここで、 i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。

  5. 降伏応力と損傷則を以下に示します:


    図 2.
  6. 2次公称応力に基づいた降伏と損傷の場合(Icrit=1):
    • 混合モードの降伏開始変位は次のとおりです:(7)
      δm1=δI1δII1.1+β2δII12+(β.δI1)2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaGccqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaabeaakiaac6cadaGcaaqaamaalaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaacaWGjbGaamysaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaiikaiabek7aIjaac6cacqaH0oazdaWgaaWcbaGaamysaiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaaaabeaaaaa@54E7@
      ここで、
      δi1=σiEi MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaaIXaaabeaakiabg2da9maalaaabaGaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaaGcbaGaamyramaaBaaaleaacaWGPbaabeaaaaaaaa@3F5B@
      i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。
      β=ΔIIΔI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaaaaa@3E45@
    • 混合モードの損傷開始は次のとおりです:(8)
      δm2=δI2δII2.1+β2δII22+(β.δI2)2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaGccqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaabeaakiaac6cadaGcaaqaamaalaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaacaWGjbGaamysaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaiikaiabek7aIjaac6cacqaH0oazdaWgaaWcbaGaamysaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaaaabeaaaaa@54EC@
      ここで、
      δi2=δi1+fGi.GCiσi MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaaiOlaiaadEeacaWGdbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaaaaaaa@4819@
      i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。
  7. 2次公称応力に基づいた降伏と損傷の場合(Icrit=2)。
    • 混合モードの降伏開始変位は次のとおりです:
      βδII1δI1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyizIm6aaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaabeaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaaaaaaa@40E8@ の場合、(9)
      δm1=δI1.1+β2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaGccaGGUaWaaOaaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@42D1@
      β>δII1δI1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyOpa4ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaabeaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaaaaaaa@403B@ の場合、(10)
      δm1=δII1β.1+β2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakiabg2da9maalaaabaGaeqiTdq2aaSbaaSqaaiaadMeacaWGjbGaaGymaaqabaaakeaacqaHYoGyaaGaaiOlamaakaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOmaaaaaeqaaaaa@4550@
      ここで、
      β=ΔIIΔI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaaaaa@3E45@
      ΔI MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaa@3857@
      変位はモードI(法線)です。
      ΔII MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaSbaaSqaaiaadMeacaWGjbaabeaaaaa@3925@
      変位はモードII(せん断)です。
    • 混合モードの損傷開始は次のとおりです:
      βδII2δI2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyizIm6aaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaabeaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaaaaaaa@40EA@ の場合、(11)
      δm2=δI2.1+β2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaGccaGGUaWaaOaaaeaacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@42D3@
      β>δII2δI2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyOpa4ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaabeaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaaaaaaa@403D@ の場合、(12)
      δm2=δII2β.1+β2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaakiabg2da9maalaaabaGaeqiTdq2aaSbaaSqaaiaadMeacaWGjbGaaGOmaaqabaaakeaacqaHYoGyaaGaaiOlamaakaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOmaaaaaeqaaaaa@4552@
  8. 混合モードの最終損傷は次のとおりです(Icrit=1,2):(13)
    δmf=δm1.(δm1δm2)EIGCIIcos2γ+GCI.(2GCII+δm1.(δm1δm2)EIIsin2γ)δm1(EIGCIIcos2γ+EIIGCIsin2γ) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaWGMbaabeaakiabg2da9maalaaabaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakiaac6cadaqadaqaaiabes7aKnaaBaaaleaacaWGTbGaaGymaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamyBaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamyramaaBaaaleaacaWGjbaabeaakiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjbaabeaakiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeo7aNjabgUcaRiaadEeacaWGdbWaaSbaaSqaaiaadMeaaeqaaOGaaiOlamaabmaabaGaaGOmaiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjbaabeaakiabgUcaRiabes7aKnaaBaaaleaacaWGTbGaaGymaaqabaGccaGGUaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyBaiaaigdaaeqaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaaaOGaayjkaiaawMcaaiaadweadaWgaaWcbaGaamysaiaadMeaaeqaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeq4SdCgacaGLOaGaayzkaaaabaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakmaabmaabaGaamyramaaBaaaleaacaWGjbaabeaakiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjbaabeaakiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeo7aNjabgUcaRiaadweadaWgaaWcbaGaamysaiaadMeaaeqaaOGaam4raiaadoeadaWgaaWcbaGaamysaaqabaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaHZoWzaiaawIcacaGLPaaaaaaaaa@8EE8@
    ここで、
    γ=arccos(ΔIΔm) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaeyypa0JaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaaiikamaalaaabaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaGcbaGaeuiLdq0aaSbaaSqaaiaad2gaaeqaaaaakiaacMcaaaa@449A@
    Δm MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaSbaaSqaaiaad2gaaeqaaaaa@387B@
    変位は混合モードです。
  9. 塑性ひずみは次のように定義されます:
    • モードI:(14)
      ΔpI=max(ΔpI(t1),ΔpIδm1cosγ,0) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaakiabg2da9iGac2gacaGGHbGaaiiEamaabmaabaGaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaakmaabmaabaGaamiDaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGSaGaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaakiabgkHiTiabes7aKnaaBaaaleaacaWGTbGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaHZoWzcaGGSaGaaGimaaGaayjkaiaawMcaaaaa@54AA@

      ここで、 (t1) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3A21@ は前の時間ステップの値です。

    • モードII:

      次の場合; (ΔII1ΔpII1(t1))2+(ΔII2ΔpII2(t1))2>δm1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaadaqadaqaaiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOeI0IaaGOmaaqabaGccqGHsislcqqHuoarcaWGWbWaaSbaaSqaaiaadMeacaWGjbGaeyOeI0IaaGOmaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGH+aGpcqaH0oazdaWgaaWcbaGaamyBaiaaigdaaeqaaaaa@6000@

      せん断面内の方向1および2のそれぞれについて、塑性ひずみが計算されます。(15)
      ΔpII1=ΔpII1(t1)+ΔII1ΔII1(t1) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyypa0JaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOeI0IaaGymaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOaGaayzkaaaaaa@5689@
      (16)
      ΔpII2=ΔpII2(t1)+ΔII2ΔII2(t1) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyypa0JaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOeI0IaaGymaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOaGaayzkaaaaaa@5689@
  10. 応力値は、損傷開始から最終損傷まで直線的に低減されます( Δm>δm2 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaSbaaSqaaiaad2gaaeqaaOGaeyOpa4JaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaaaaa@3D0C@ )。(17)
    D=max(Δmδm2δmfδm2,D(t1),0) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2da9iGac2gacaGGHbGaaiiEamaabmaabaWaaSaaaeaacqqHuoardaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamyBaiaaikdaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaWGMbaabeaakiabgkHiTiabes7aKnaaBaaaleaacaWGTbGaaGOmaaqabaaaaOGaaiilaiaadseacaGGOaGaamiDaiabgkHiTiaaigdacaGGPaGaaiilaiaaicdaaiaawIcacaGLPaaaaaa@5242@

    応力の低減は、法線方向では次のように計算されます:

    ΔI>ΔpI MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaOGaeyOpa4JaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaaaaa@3CBD@ の場合、 σI=EI(ΔIΔpI) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMeaaeqaaOGaeyypa0JaamyramaaBaaaleaacaWGjbaabeaakmaabmaabaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaOGaeyOeI0IaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMcaaaaa@43D1@ です。

    上記以外の場合は、 σI=EI(1D)(ΔIΔpI) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMeaaeqaaOGaeyypa0JaamyramaaBaaaleaacaWGjbaabeaakmaabmaabaGaaGymaiabgkHiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaacaWGjbaabeaakiabgkHiTiabfs5aejaadchadaWgaaWcbaGaamysaaqabaaakiaawIcacaGLPaaaaaa@47CB@ です。

    せん断面内の方向1および2のそれぞれについて、次のようになります:(18)
    σII1=EII(1D)(ΔII1ΔpII1) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMeacaWGjbGaeyOeI0IaaGymaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaadMeacaWGjbaabeaakmaabmaabaGaaGymaiabgkHiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@4FFB@
    (19)
    σII2=EII(1D)(ΔII2ΔpII2) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMeacaWGjbGaeyOeI0IaaGOmaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaadMeacaWGjbaabeaakmaabmaabaGaaGymaiabgkHiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaikdaaeqaaOGaeyOeI0IaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@4FFE@
  11. 結合要素は、Δm>δmf MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaSbaaSqaaiaad2gaaeqaaOGaeyOpa4JaeqiTdq2aaSbaaSqaaiaad2gacaWGMbaabeaaaaa@3D3B@ の場合に削除されます。