/MAT/LAW116

ブロックフォーマットキーワード 損傷と破壊を伴う混合モードのひずみ速度依存の材料モデルを記述します。

この材料は、ソリッド六面体要素(/BRICK)と粘着ソリッドプロパティ(/PROP/TYPE43 (CONNECT))のみに適合します。
注: どの破壊モデルにも適合しません。すべての損傷と破壊は、この材料内で直接定義されます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW116/mat_ID/unit_ID
mat_title
ρ i                
E I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ E II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ Thick Imass Idel Icrit  
G C I _ i n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ G C I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ ε ˙ G I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbaabeaaaSqabaaaaa@39A4@ f G I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaaqabaaaaa@38A8@    
G C II_ini MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ G C I I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ ε ˙ G II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbGaamysaaqabaaaleqa aaaa@3A72@ f G II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@    
σ A_I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ σ B _ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ ε ˙ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaaqabaaaaa@38A0@ Iorder_I Ifail_I    
σ A_II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ σ B _ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ ε ˙ II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@396E@ Iorder_II Ifail_II    

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位の識別子(オプション)

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度。

(実数)

[ kg m 3 ]
E I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ 単位長さあたりの法線方向のヤング(剛性)率。

(実数)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
E II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbaabeaaaaa@37BB@ 単位長さあたりの接線方向のせん断(剛性)係数。

デフォルト = E I I = E I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGjbGaamysaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaa dMeaaeqaaaaa@3B5C@ (実数)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
Thick 基準粘着板厚。

(実数)

[ m ]
Imass 質量計算フラグ
= 1(デフォルト)
要素質量は密度と平均面積を使用して計算されます。
= 2
要素質量は密度と体積を使用して計算される

(整数)

 
Idel 要素を削除するための積分点の数を示す破壊フラグ(1~4)。

デフォルト = 1(整数)

 
Icrit 降伏と損傷の開始フラグ。
= 1(デフォルト)
2次公称応力に基づきます。
= 2
最大公称応力に基づきます。

(整数)

 
G C I _ i n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ モードI(法線方向)の初期臨界エネルギー解放率。

(実数)

[ J ]
G C I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadMgaaeqaaaaa @3C37@ 臨界エネルギー解放率の上限。 G C I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaaqabaaaaa@3884@ のひずみ速度依存性を示します。

デフォルト = 0.0(実数)

[ J ]
ε ˙ G I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbaabeaaaSqabaaaaa@39A4@ GCひずみ速度依存性の参照(下限)ひずみ速度。

G C I _ i n f > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaac+facaWGPbGaamOBaiaadAgaaeqaaOGa eyOpa4JaaGimaaaa@3DFF@ の場合、定義する必要があります。

(実数)

[Hz]
f G I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaaqabaaaaa@38A8@ モードIでの破壊前のエネルギー解放率の形状係数。

(実数)

 
G C I I _ i n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ モードII(せん断)の初期臨界エネルギー解放率。

(実数)

[ J ]
G C I I _ i n f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGPbaa beaaaaa@3D05@ 臨界エネルギー解放率の上限。 G C II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3952@ のひずみ速度依存性を示します。

デフォルト = 0.0(実数)

[ J ]
ε ˙ G I I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaam4ramaaBaaameaacaWGjbGaamysaaqabaaaleqa aaaa@3A72@ GCひずみ速度依存性の参照(下限)ひずみ速度。

G C I I _ i n f > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamysaiaadMeacaGGFbGaamyAaiaad6gacaWGMbaa beaakiabg6da+iaaicdaaaa@3ECD@ の場合、定義する必要があります。

(実数)

[Hz]
f G I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@ モードIIでの破壊前のエネルギー解放率の形状係数。

(実数)

 
σ A _ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ モードIでの静的降伏応力。

(実数)

[ Pa ]
σ B _ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaaqabaaaaa@3A5D@ モードIでのひずみ速度依存の降伏応力項。

(実数)

[ Pa ]
ε ˙ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaaqabaaaaa@38A0@ モードIでの降伏応力速度依存性の参照(下限)ひずみ速度値。

σ B _ I > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkeacaGGFbGaamysaaqabaGccqGH+aGpcaaIWaaaaa@3C29@ の場合、定義する必要があります。

(実数)

[Hz]
Iorder_I モードIでのひずみ速度に対する降伏応力依存性の次数。
= 1(デフォルト)
ひずみ速度の線形対数依存性。
= 2
ひずみ速度の2次対数依存性。

(整数)

 
Ifail_I f G I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaaqabaaaaa@38A8@ によって定義される破壊基準:
= 1(デフォルト)
破壊エネルギーの比率。
= 2
破壊変位の比率。

(整数)

 
σ A _ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ モードIIでの静的降伏応力。

(実数)

[ Pa ]
σ B _ I I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadgeacaGGFbGaamysaiaadMeaaeqaaaaa@3B2B@ モードIIでのひずみ速度依存の降伏応力項。

(実数)

[ Pa ]
ε ˙ I I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@396E@ モードIIでの降伏応力速度依存性の参照(下限)ひずみ速度値。

σ B _ I I > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkeacaGGFbGaamysaiaadMeaaeqaaOGaeyOpa4JaaGim aaaa@3CF8@ の場合、定義する必要があります。

(実数)

[Hz]
Iorder_II モードIIでのひずみ速度の降伏応力依存性の次数。
= 1(デフォルト)
ひずみ速度の線形対数依存性。
= 2
ひずみ速度の2次対数依存性。

(整数)

 
Ifail_II f G II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaadE eadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@3976@ によって定義される破壊基準:
= 1(デフォルト)
破壊エネルギーの比率。
= 2
破壊変位の比率。

(整数)

 

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW116/3/1
MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE
#              RHO_I
              1.2E-9
#                 E1                  E2               Thick     Imass      Idel    Icrit  
                3000                1000               0.200         2         1        0
#            GC1_INI             GC1_INF              SRATG1                 FG1
               2.000               3.000               1.500                 0.7
#            GC2_INI             GC2_INF              SRATG2                 FG2
                9.00                   0                   0                 0.4
#              SIGA1               SIGB1              SRATE1   Iorder1    Ifail1
               33.00               1.500          2.50000E-5         1         2
#              SIGA2               SIGB2              SRATE2   Iorder2    Ifail2
               26.00               1.300          1.00000E-5         1         2
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata

コメント

  1. 弾性剛性は次のように定義されます:


    図 1.
    ここで、
    GP
    一定応力下の塑性エネルギー
    GC
    全エネルギー
    i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}
    モードI(法線)とモードII(せん断)
    引張分離則の形状は次のように定義されます:
    • 破壊エネルギーの比率によって定義される破壊基準(Ifail_i=1)(1)
      0 f G i = G C i ( ε ˙ e q ) G C i ( ε ˙ e q ) < 1 σ ( ε ˙ e q ) 2 2 G C i ( ε ˙ e q ) E i < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaa aeaacaWGhbGaam4qamaaBaaaleaacaWGPbaabeaakiaacIcacuaH1o qzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaGccaGGPaaabaGaam4r aiaadoeadaWgaaWcbaGaamyAaaqabaGccaGGOaGafqyTduMbaiaada WgaaWcbaGaamyzaiaadghaaeqaaOGaaiykaaaacqGH8aapcaaIXaGa eyOeI0YaaSaaaeaacqaHdpWCdaqadaqaaiqbew7aLzaacaWaaSbaaS qaaiaadwgacaWGXbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaOqaaiaaikdacaWGhbGaam4qamaaBaaaleaacaWGPbaabe aakiaacIcacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaGc caGGPaGaamyramaaBaaaleaacaWGPbaabeaaaaGccqGH8aapcaaIXa aaaa@6305@
    • 破壊変位の比率によって定義される破壊基準(Ifail_i=2)(2)
      0f G i = δ i2 δ i1 δ if δ i1 <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadAgacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaa aeaacqaH0oazdaWgaaWcbaGaamyAaiaaikdaaeqaaOGaeyOeI0Iaeq iTdq2aaSbaaSqaaiaadMgacaaIXaaabeaaaOqaaiabes7aKnaaBaaa leaacaWGPbGaamOzaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaam yAaiaaigdaaeqaaaaakiabgYda8iaaigdaaaa@4E30@
  2. 降伏応力は次のように定義されます:
    • Iorder_i=1の場合:(3)
      σ ( ε ˙ e q ) = σ A _ i + σ B _ i . [ max ( 0 , ln ( ε ˙ e q ε ˙ i ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae WaaeaacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaaakiaa wIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcbaGaamyqaiaac+faca WGPbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGcbGaai4xaiaa dMgaaeqaaOGaaiOlamaadmaabaGaciyBaiaacggacaGG4bWaaeWaae aacaaIWaGaaiilaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew7a LzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOqaaiqbew7aLzaaca WaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaGaay5waiaaw2faaaaa@5A93@
    • Iorder_i=2の場合:(4)
      σ ( ε ˙ e q ) = σ A _ i + σ B _ i . [ max ( 0 , ln ( ε ˙ e q ε ˙ i ) ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae WaaeaacuaH1oqzgaGaamaaBaaaleaacaWGLbGaamyCaaqabaaakiaa wIcacaGLPaaacqGH9aqpcqaHdpWCdaWgaaWcbaGaamyqaiaac+faca WGPbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGcbGaai4xaiaa dMgaaeqaaOGaaiOlamaadmaabaGaciyBaiaacggacaGG4bWaaeWaae aacaaIWaGaaiilaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew7a LzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaaaOqaaiqbew7aLzaaca WaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaa@5B7C@

      ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。

  3. 相当ひずみ速度は次のように定義されます:(5)
    ε ˙ eq = Δ ˙ 2 I + Δ ˙ 2 II Thick MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaaaeaadaGc aaqaaiqbfs5aezaacaWaaWbaaSqabeaacaaIYaaaaOWaaSbaaSqaai aadMeaaeqaaOGaey4kaSIafuiLdqKbaiaadaahaaWcbeqaaiaaikda aaGcdaWgaaWcbaGaamysaiaadMeaaeqaaaqabaaakeaacaWGubGaam iAaiaadMgacaWGJbGaam4Aaaaaaaa@47EA@
    ここで、
    Δ ˙ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aadaWgaaWcbaGaamysaaqabaaaaa@385F@
    法線速度。
    Δ ˙ II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aadaWgaaWcbaGaamysaiaadMeaaeqaaaaa@392D@
    せん断速度。
  4. 速度依存の破壊エネルギーは次のように定義されます:(6)
    G C i ( ε ˙ eq )=G C i_ini +( G C i_inf G C i_ini ).exp( ε ˙ G i ε ˙ eq ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eadaWgaaWcbaGaamyAaaqabaGccaGGOaGafqyTduMbaiaadaWgaaWc baGaamyzaiaadghaaeqaaOGaaiykaiabg2da9iaadEeacaWGdbWaaS baaSqaaiaadMgacaGGFbGaamyAaiaad6gacaWGPbaabeaakiabgUca RmaabmaabaGaam4raiaadoeadaWgaaWcbaGaamyAaiaac+faciGGPb GaaiOBaiaacAgaaeqaaOGaeyOeI0Iaam4raiaadoeadaWgaaWcbaGa amyAaiaac+facaWGPbGaamOBaiaadMgaaeqaaaGccaGLOaGaayzkaa GaaiOlaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa cuaH1oqzgaGaamaaBaaaleaacaWGhbWaaSbaaWqaaiaadMgaaeqaaa WcbeaaaOqaaiqbew7aLzaacaWaaSbaaSqaaiaadwgacaWGXbaabeaa aaaakiaawIcacaGLPaaaaaa@6316@

    ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。

  5. 降伏応力と損傷則を以下に示します:


    図 2.
  6. 2次公称応力に基づいた降伏と損傷の場合(Icrit=1):
    • 混合モードの降伏開始変位は次のとおりです:(7)
      δ m1 = δ I1 δ II1 . 1+ β 2 δ II1 2 + (β. δ I1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGymaaqabaGccqaH0oazdaWgaaWcbaGaamysaiaadMeaca aIXaaabeaakiaac6cadaGcaaqaamaalaaabaGaaGymaiabgUcaRiab ek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaaca WGjbGaamysaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaiikaiabek7a Ijaac6cacqaH0oazdaWgaaWcbaGaamysaiaaigdaaeqaaOGaaiykam aaCaaaleqabaGaaGOmaaaaaaaabeaaaaa@54E7@
      ここで、
      δ i1 = σ i E i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMgacaaIXaaabeaakiabg2da9maalaaabaGaeq4Wdm3a aSbaaSqaaiaadMgaaeqaaaGcbaGaamyramaaBaaaleaacaWGPbaabe aaaaaaaa@3F5B@
      i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。
      β= Δ II Δ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamysaiaadMeaaeqaaaGc baGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaaaaa@3E45@
    • 混合モードの損傷開始は次のとおりです:(8)
      δ m2 = δ I2 δ II2 . 1+ β 2 δ II2 2 + (β. δ I2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGOmaaqabaGccqaH0oazdaWgaaWcbaGaamysaiaadMeaca aIYaaabeaakiaac6cadaGcaaqaamaalaaabaGaaGymaiabgUcaRiab ek7aInaaCaaaleqabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaaca WGjbGaamysaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaiikaiabek7a Ijaac6cacqaH0oazdaWgaaWcbaGaamysaiaaikdaaeqaaOGaaiykam aaCaaaleqabaGaaGOmaaaaaaaabeaaaaa@54EC@
      ここで、
      δ i 2 = δ i 1 + f G i . G C i σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadMgacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGPbGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadAgacaWGhbWaaS baaSqaaiaadMgaaeqaaOGaaiOlaiaadEeacaWGdbWaaSbaaSqaaiaa dMgaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaaaaaaa@4819@
      i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39A5@ ={I,II}、モードIとモードII。
  7. 2次公称応力に基づいた降伏と損傷の場合(Icrit=2)。
    • 混合モードの降伏開始変位は次のとおりです:
      β δ II1 δ I1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey izIm6aaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaaaaaaa@40E8@ の場合、(9)
      δ m1 = δ I1 . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIXaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGymaaqabaGccaGGUaWaaOaaaeaacaaIXaGaey4kaSIaeq OSdi2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@42D1@
      β> δ II1 δ I1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey Opa4ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIXaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGymaaqabaaaaaaa@403B@ の場合、(10)
      δ m1 = δ II1 β . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIXaaabeaakiabg2da9maalaaabaGaeqiTdq2a aSbaaSqaaiaadMeacaWGjbGaaGymaaqabaaakeaacqaHYoGyaaGaai OlamaakaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOm aaaaaeqaaaaa@4550@
      ここで、
      β= Δ II Δ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaSaaaeaacqqHuoardaWgaaWcbaGaamysaiaadMeaaeqaaaGc baGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaaaaaa@3E45@
      Δ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMeaaeqaaaaa@3857@
      変位はモードI(法線)です。
      Δ II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMeacaWGjbaabeaaaaa@3925@
      変位はモードII(せん断)です。
    • 混合モードの損傷開始は次のとおりです:
      β δ II2 δ I2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey izIm6aaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaaaaaaa@40EA@ の場合、(11)
      δ m2 = δ I2 . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIYaaabeaakiabg2da9iabes7aKnaaBaaaleaa caWGjbGaaGOmaaqabaGccaGGUaWaaOaaaeaacaaIXaGaey4kaSIaeq OSdi2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@42D3@
      β> δ II2 δ I2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey Opa4ZaaSaaaeaacqaH0oazdaWgaaWcbaGaamysaiaadMeacaaIYaaa beaaaOqaaiabes7aKnaaBaaaleaacaWGjbGaaGOmaaqabaaaaaaa@403D@ の場合、(12)
      δ m2 = δ II2 β . 1+ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaaIYaaabeaakiabg2da9maalaaabaGaeqiTdq2a aSbaaSqaaiaadMeacaWGjbGaaGOmaaqabaaakeaacqaHYoGyaaGaai OlamaakaaabaGaaGymaiabgUcaRiabek7aInaaCaaaleqabaGaaGOm aaaaaeqaaaaa@4552@
  8. 混合モードの最終損傷は次のとおりです(Icrit=1,2):(13)
    δ mf = δ m1 .( δ m1 δ m2 ) E I G C II cos 2 γ+G C I .( 2G C II + δ m1 .( δ m1 δ m2 ) E II sin 2 γ ) δ m1 ( E I G C II cos 2 γ+ E II G C I sin 2 γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad2gacaWGMbaabeaakiabg2da9maalaaabaGaeqiTdq2a aSbaaSqaaiaad2gacaaIXaaabeaakiaac6cadaqadaqaaiabes7aKn aaBaaaleaacaWGTbGaaGymaaqabaGccqGHsislcqaH0oazdaWgaaWc baGaamyBaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamyramaaBaaale aacaWGjbaabeaakiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjbaa beaakiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeo 7aNjabgUcaRiaadEeacaWGdbWaaSbaaSqaaiaadMeaaeqaaOGaaiOl amaabmaabaGaaGOmaiaadEeacaWGdbWaaSbaaSqaaiaadMeacaWGjb aabeaakiabgUcaRiabes7aKnaaBaaaleaacaWGTbGaaGymaaqabaGc caGGUaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyBaiaaigdaaeqaaO GaeyOeI0IaeqiTdq2aaSbaaSqaaiaad2gacaaIYaaabeaaaOGaayjk aiaawMcaaiaadweadaWgaaWcbaGaamysaiaadMeaaeqaaOGaci4Cai aacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeq4SdCgacaGLOaGa ayzkaaaabaGaeqiTdq2aaSbaaSqaaiaad2gacaaIXaaabeaakmaabm aabaGaamyramaaBaaaleaacaWGjbaabeaakiaadEeacaWGdbWaaSba aSqaaiaadMeacaWGjbaabeaakiGacogacaGGVbGaai4CamaaCaaale qabaGaaGOmaaaakiabeo7aNjabgUcaRiaadweadaWgaaWcbaGaamys aiaadMeaaeqaaOGaam4raiaadoeadaWgaaWcbaGaamysaaqabaGcci GGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaHZoWzaiaa wIcacaGLPaaaaaaaaa@8EE8@
    ここで、
    γ=arccos( Δ I Δ m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0JaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaaiikamaa laaabaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaaaakiaacMcaaaa@449A@
    Δ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaaaa@387B@
    変位は混合モードです。
  9. 塑性ひずみは次のように定義されます:
    • モードI:(14)
      Δ p I = max ( Δ p I ( t 1 ) , Δ p I δ m 1 cos γ , 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iCamaaBaaaleaacaWGjbaabeaakiabg2da9iGac2gacaGGHbGaaiiE amaabmaabaGaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaakmaabm aabaGaamiDaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGSaGaeuiL dqKaamiCamaaBaaaleaacaWGjbaabeaakiabgkHiTiabes7aKnaaBa aaleaacaWGTbGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaHZoWz caGGSaGaaGimaaGaayjkaiaawMcaaaaa@54AA@

      ここで、 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3A21@ は前の時間ステップの値です。

    • モードII:

      次の場合; ( Δ I I 1 Δ p I I 1 ( t 1 ) ) 2 + ( Δ I I 2 Δ p I I 2 ( t 1 ) ) 2 > δ m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada qadaqaaiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigda aeqaaOGaeyOeI0IaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysai abgkHiTiaaigdaaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGa ayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abgUcaRmaabmaabaGaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOe I0IaaGOmaaqabaGccqGHsislcqqHuoarcaWGWbWaaSbaaSqaaiaadM eacaWGjbGaeyOeI0IaaGOmaaqabaGcdaqadaqaaiaadshacqGHsisl caaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaqabaGccqGH+aGpcqaH0oazdaWgaaWcbaGaamyBaiaaigda aeqaaaaa@6000@

      せん断面内の方向1および2のそれぞれについて、塑性ひずみが計算されます。(15)
      Δ p I I 1 = Δ p I I 1 ( t 1 ) + Δ I I 1 Δ I I 1 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyyp a0JaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMca aiabgUcaRiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOGaeyOeI0IaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOe I0IaaGymaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOa Gaayzkaaaaaa@5689@
      (16)
      Δ p I I 2 = Δ p I I 2 ( t 1 ) + Δ I I 2 Δ I I 2 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyyp a0JaeuiLdqKaamiCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMca aiabgUcaRiabfs5aenaaBaaaleaacaWGjbGaamysaiabgkHiTiaaig daaeqaaOGaeyOeI0IaeuiLdq0aaSbaaSqaaiaadMeacaWGjbGaeyOe I0IaaGymaaqabaGcdaqadaqaaiaadshacqGHsislcaaIXaaacaGLOa Gaayzkaaaaaa@5689@
  10. 応力値は、損傷開始から最終損傷まで直線的に低減されます( Δ m > δ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaOGaeyOpa4JaeqiTdq2aaSbaaSqaaiaad2ga caaIYaaabeaaaaa@3D0C@ )。(17)
    D = max ( Δ m δ m 2 δ m f δ m 2 , D ( t 1 ) , 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iGac2gacaGGHbGaaiiEamaabmaabaWaaSaaaeaacqqHuoardaWg aaWcbaGaamyBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamyBai aaikdaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaad2gacaWGMbaabeaa kiabgkHiTiabes7aKnaaBaaaleaacaWGTbGaaGOmaaqabaaaaOGaai ilaiaadseacaGGOaGaamiDaiabgkHiTiaaigdacaGGPaGaaiilaiaa icdaaiaawIcacaGLPaaaaaa@5242@

    応力の低減は、法線方向では次のように計算されます:

    Δ I > Δ p I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadMeaaeqaaOGaeyOpa4JaeuiLdqKaamiCamaaBaaaleaa caWGjbaabeaaaaa@3CBD@ の場合、 σ I = E I ( Δ I Δ p I ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeaaeqaaOGaeyypa0JaamyramaaBaaaleaacaWGjbaa beaakmaabmaabaGaeuiLdq0aaSbaaSqaaiaadMeaaeqaaOGaeyOeI0 IaeuiLdqKaamiCamaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMca aaaa@43D1@ です。

    上記以外の場合は、 σ I = E I ( 1 D ) ( Δ I Δ p I ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeaaeqaaOGaeyypa0JaamyramaaBaaaleaacaWGjbaa beaakmaabmaabaGaaGymaiabgkHiTiaadseaaiaawIcacaGLPaaada qadaqaaiabfs5aenaaBaaaleaacaWGjbaabeaakiabgkHiTiabfs5a ejaadchadaWgaaWcbaGaamysaaqabaaakiaawIcacaGLPaaaaaa@47CB@ です。

    せん断面内の方向1および2のそれぞれについて、次のようになります:(18)
    σ II1 = E II ( 1D )( Δ II1 Δ p II1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeacaWGjbGaeyOeI0IaaGymaaqabaGccqGH9aqpcaWG fbWaaSbaaSqaaiaadMeacaWGjbaabeaakmaabmaabaGaaGymaiabgk HiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaa caWGjbGaamysaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaigdaaeqaaaGccaGL OaGaayzkaaaaaa@4FFB@
    (19)
    σ II2 = E II ( 1D )( Δ II2 Δ p II2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMeacaWGjbGaeyOeI0IaaGOmaaqabaGccqGH9aqpcaWG fbWaaSbaaSqaaiaadMeacaWGjbaabeaakmaabmaabaGaaGymaiabgk HiTiaadseaaiaawIcacaGLPaaadaqadaqaaiabfs5aenaaBaaaleaa caWGjbGaamysaiabgkHiTiaaikdaaeqaaOGaeyOeI0IaeuiLdqKaam iCamaaBaaaleaacaWGjbGaamysaiabgkHiTiaaikdaaeqaaaGccaGL OaGaayzkaaaaaa@4FFE@
  11. 結合要素は、 Δ m > δ mf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaad2gaaeqaaOGaeyOpa4JaeqiTdq2aaSbaaSqaaiaad2ga caWGMbaabeaaaaa@3D3B@ の場合に削除されます。