/MAT/LAW111

ブロックフォーマットキーワード 超弾性挙動のモデル化に使用できるMarlow材料モデルを記述します。この材料則はソリッド要素とのみ適合性があります。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW111/mat_ID/unit_IDまたは/MAT/MARLOW/mat_ID/unit_ID
mat_title
ρ i                
関数入力
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Itype fct_ID Fscale ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabe27aUbaa@3837@        

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位識別子

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度。

(実数)

[ kg m 3 ]
Itype 試験データのタイプ(応力ひずみ曲線)
= 1(デフォルト)
単軸データ試験。
= 2
等2軸データ試験。
= 3
平面データ試験。

(整数)

 
fct_ID 工学応力と工学ひずみの関係を定義する関数の識別子。

(整数)

 
ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabe27aUbaa@3837@ ポアソン比

デフォルト = 0.495(実数)

 
Fscale 関数fct_IDの縦軸(応力)のスケールファクター。

デフォルト = 1.0(実数)

[ Pa ]

例(アルミニウム)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit_Mg_mm_s
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/MARLOW/1/1
Aluminium
#        Init. dens.         
              1.0E-9
#    Itype    fct_ID  	          Fscale                  Nu
         1        11                   0               0.495
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|   
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/11
eng. stress vs eng. strain (data from Treloar 1975)
#                  X                   Y
   0.0                 0.0
   0.118558340245158   0.147781942125394
   0.229807469073257   0.235370392667332
   0.352872064166251   0.317098176147032
   0.575267906053679   0.4127492327798
   0.826025385319594   0.497843181600741
   1.15247263605042    0.600395253711613
   1.41741319317695    0.681964895195418
   1.99461340483096    0.866102422989683
   2.57183319597017    1.06544342104666
   3.01188513821085    1.24856432172444
   3.75483021047915    1.60560301197591
   4.32044087300526    1.97102586370987
   4.74886561326187    2.30619464551444
   5.13008421468603    2.70807751093106
   5.41191132474589    3.04925719469397
   5.61340230088995    3.43730640075521
   5.84795248474777    3.79023377564191
   6.0210291095147     4.1479076695769
   6.14916629739038    4.49627566011047
   6.26551964740034    4.87506376966911
   6.36059461533377    5.25621459595217
   6.44855620568032    5.62216985907231
   6.59373206402824    6.34826716084913  	 
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|  
#enddata

コメント

  1. Marlowエネルギー密度は次のように考慮されます: (1)
    W = U ( I ¯ ) + V ( J ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2 da9iaadwfadaqadaqaaiqadMeagaqeaaGaayjkaiaawMcaaiabgUca RiaadAfadaqadaqaaiaadQeaaiaawIcacaGLPaaaaaa@3F37@

    ここで、 I ¯ = λ ¯ 1 2 + λ ¯ 2 2 + λ ¯ 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaara Gaeyypa0Jafq4UdWMbaebadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcuaH7oaBgaqeamaaDaaaleaacaaIYaaabaGaaGOmaaaaki abgUcaRiqbeU7aSzaaraWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaa @440D@ および J = λ 1 λ 2 λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 da9iabeU7aSnaaBaaaleaacaaIXaaabeaakiabeU7aSnaaBaaaleaa caaIYaaabeaakiabeU7aSnaaBaaaleaacaaIZaaabeaaaaa@3FB3@

    ここで、 λ ¯ k = J 1 3 λ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbae badaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWGkbWaaWbaaSqabeaa cqGHsisldaWcdaadbaGaaGymaaqaaiaaiodaaaaaaOGaeq4UdW2aaS baaSqaaiaadUgaaeqaaaaa@4048@ は方向 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbaaaa@39A7@ =1、2、3におけるストレッチです。

    V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@ は、体積弾性率 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@ を使用して計算されます(試験データ関数とポアソン比から計算されます)。(2)
    V( J )= 1 2 K ( J1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGaamOsaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaGaam4samaabmaabaGaamOsaiabgkHiTiaaigdaaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@416F@
    U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@ は、単軸試験、2軸試験、またはせん断試験(関数fct_ID)のデータを使用して次のように特定されます: (3)
    U( I ¯ )= 0 λ t 1 T( λ t 1 ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGabmysayaaraaacaGLOaGaayzkaaGaeyypa0Zaa8qmaeaacaWG ubWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamiDaaqabaGccqGHsislca aIXaaacaGLOaGaayzkaaaaleaacaaIWaaabaGaeq4UdW2aaSbaaWqa aiaadshaaeqaaSGaeyOeI0IaaGymaaqdcqGHRiI8aOGaeyOaIyRaeq yTdugaaa@4BBA@
    ここで、
    T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@
    工学ひずみ λ t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadshaaeqaaOGaeyOeI0IaaGymaaaa@3A82@ に対応する応力。
    λ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadshaaeqaaaaa@38D0@
    単軸引張試験、等2軸試験、または平面試験に対応する相当ストレッチ。
  2. Cauchy応力は次のように計算されます。(4)
    σ= 2 J U I ¯ dev( b * )+ V J I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0ZaaSaaaeaacaaIYaaabaGaamOsaaaadaWcaaqaaiabgkGi2kaa dwfaaeaacqGHciITceWGjbGbaebaaaGaamizaiaadwgacaWG2bGaai ikaiaadkgadaahaaWcbeqaaiaacQcaaaGccaGGPaGaey4kaSYaaSaa aeaacqGHciITcaWGwbaabaGaeyOaIyRaamOsaaaacaWGjbaaaa@4B20@

    ここで、 b * = J 2 3 F F T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCa aaleqabaGaaiOkaaaakiabg2da9iaadQeadaahaaWcbeqaaiabgkHi TmaaliaabaGaaGOmaaqaaiaaiodaaaaaaOGaamOraiaadAeadaahaa Wcbeqaaiaadsfaaaaaaa@3EE3@ です。

  3. /VISC/PRONYをLAW111と組み合わせて使用することで、粘性効果を含めることができます。