/FAIL/GENE1

ブロックフォーマットキーワード ひずみ速度、熱、またはメッシュサイズ依存性のさまざまな組み合わせを使用した複数の破壊モデル。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/GENE1/mat_ID/unit_ID
Pmin Pmax SigP1_max Time_max dtmin
fct_IDsm   Eps_dot_sm Sig_max Sigr K
fct_IDps   Eps_dot_ps Eps_max Eps_eff Eps_vol
Eps_min Shear fct_IDg12 fct_IDg13 fct_IDe1c      
tab_IDfld Itab Eps_dot_fld Nstep Ismooth Istrain   Thinning
Volfrac P_thickfail NCS   Tmax    
fct_IDel   Fscaleel El_ref    
オプションの行
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位の識別子。

(整数、最大10桁)

 
Pmin 最小圧力(圧縮時が正)。

(実数)

[ Pa ]
Pmax 最大圧力(圧縮時が正)。

(実数)

[ Pa ]
SigP1_max 最大主応力。
< 0.0
正の応力軸性に制限されています。
> 0.0
制限なし。

(実数)

[ Pa ]
Time_max 破壊時間。

デフォルト = 1E+20(実数)

[ s ]
dtmin 最小時間ステップ

(実数)

[ s ]
fct_IDsm 最大相当応力対ひずみ速度の関数の識別子。

(整数)

 
Eps_dot_sm fct_IDの参照ひずみ速度値。sm

デフォルト = 1(実数)

[ 1 s ]
Sig_max fct_IDsmまたは最大相当応力(fct_IDsmが定義されていない場合)の縦軸スケールファクター。

デフォルト = 1、fct_IDsmが定義されている場合(実数)

[ Pa ]
Sigr Tuler-Butcher基準の初期破壊応力。

(実数)

[ Pa ]
K Tuler-Butcher基準の損傷積分の限界値。

(実数)

[ P a 2 s ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGqbGaamyyamaaCaaaleqabaGaaGOmaaaakiabgwSixlaadohaaiaa wUfacaGLDbaaaaa@3DD9@
fct_IDps 最大主ひずみ対ひずみ速度の関数の識別子。

(整数)

 
Eps_dot_ps fct_IDpsの参照ひずみ速度値。

デフォルト = 1(実数)

[ 1 s ]
Eps_max fct_IDpsまたは最大主ひずみ(fct_IDpsが定義されていない場合)の縦軸スケールファクター。

デフォルト = 1、fct_IDpsが定義されている場合(実数)

 
Eps_eff 最大実効ひずみ。

(実数)

 
Eps_vol 最大体積ひずみ。

(実数)

 
Eps_min 最小主ひずみ。

(実数)

 
Shear テンソルせん断ひずみ( γ max 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHZoWzdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiaaikda aaaaaa@3B73@ )。

ここで、 γ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3A9D@ は破壊時の工学せん断ひずみ。

(実数)

 
fct_IDg12 最大面内せん断ひずみ γ 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@3941@ 対要素サイズの関数の識別子。

(実数)

 
fct_IDg13 最大横せん断ひずみ γ 13 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@3941@ 対要素サイズの関数の識別子。

(実数)

 
fct_IDe1c 最大面内主ひずみ ε 1 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaaigdaaeaacaWGJbaaaaaa@396E@ 対要素サイズの関数の識別子。

(実数)

 
tab_IDfld 成形限界図のテーブルまたは関数の識別子。

(整数)

 
Itab テーブル依存性タイプ(tab_IDfldがテーブルの場合にのみ使用されます)。
= 1(デフォルト)
成形限界図対ひずみ速度のテーブルです。
= 2
成形限界図対要素サイズのテーブルです。

(整数)

 
Eps_dot_fld tab_IDfldの参照ひずみ速度値。

デフォルト = 1(実数)

[ 1 s ]
Nstep 応力低減のサイクル数。

デフォルト = 10(整数)

 
Ismooth 補間タイプ(表形式降伏関数の場合)。
= 1(デフォルト)
線形補間。
= 2
対数補間(底10)。
= 3
対数補間(底n)。

(整数)

 
Istrain 工学 / 真の入力ひずみ
= 0(デフォルト)
FLD曲線は、真のひずみで定義される
= 1
FLD曲線は、工学ひずみで定義される

(整数)

 
Thinning 薄化破壊値。

(実数)

 
Volfrac

指定した値に達すると要素が削除される損傷体積率(完全積分要素と高次要素のみ)。

デフォルト = 0.5(実数)

 
P_thickfail 低減積分要素の削除が開始される板厚方向積分点の破壊率。

0.0≤ P_thickfail ≤1.0

デフォルト = 1.0(実数)

 
NCS 要素の削除が開始される条件の数。

デフォルト = 1(整数)

 
Tmax 最大温度

(実数)

[ K ]
fct_IDel 次の基準の要素サイズスケールファクター関数識別子: PminPmaxSigP1_maxSig_maxSigrKEpsPS_maxEps_eff Eps_vol Eps_minSheartab_IDfldThinning

(整数)

 
Fscaleel 以下に対する要素サイズ関数スケールファクター: fct_IDeltab_IDfldItab=2)、fct_IDg12fct_IDg23fct_IDg13fct_IDe1c

デフォルト = 1.0(実数)

 
El_ref 以下に対する参照要素サイズ: fct_IDeltab_IDfldItab=2)、fct_IDg12fct_IDg23fct_IDg13fct_IDe1c

デフォルト = 1.0(実数)

[ m ]
fail_ID (オプション)破壊基準識別子。  

コメント

  1. 破壊基準が使用されるのは、この値が0以外の場合のみです。
  2. 以下のような破壊モデル:
    • 最小静水圧ベースの破壊基準:

      P | P min | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgs MiJkabgkHiTmaaemaabaGaamiuamaaBaaaleaaciGGTbGaaiyAaiaa c6gaaeqaaaGccaGLhWUaayjcSdaaaa@406D@

    • 最大静水圧ベースの破壊基準:

      P | P max | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgw MiZoaaemaabaGaamiuamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqa aaGccaGLhWUaayjcSdaaaa@3F93@

      ここで、静水圧は次のように計算されます:

      P = σ x x + σ y y + σ z z 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaadIhacaWG4baa beaakiabgUcaRiabeo8aZnaaBaaaleaacaWG5bGaamyEaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaaGcbaGaaG4m aaaaaaa@472F@

      注: 静水圧は圧縮時が正となります。
    • 最大主応力:

      σ 1 SigP1_max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ymaiabgwMiZcbaaaaaaaaapeGaae4uaiaabMgacaqGNbGaaeiuaiaa bgdacaqGFbGaaeyBaiaabggacaqG4baaaa@4241@ 、次の場合; SigP1_max>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGtbGaaeyAaiaabEgacaqGqbGaaeymaiaab+facaqGTbGaaeyy aiaabIhacaqG+aGaaeimaaaa@3F6D@

      σ 1 SigP1_max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ymaiabgwMiZcbaaaaaaaaapeWaaqWaaeaacaqGtbGaaeyAaiaabEga caqGqbGaaeymaiaab+facaqGTbGaaeyyaiaabIhaaiaawEa7caGLiW oaaaa@455F@ SigP1_max<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGtbGaaeyAaiaabEgacaqGqbGaaeymaiaab+facaqGTbGaaeyy aiaabIhacaqG8aGaaeimaaaa@3F6B@ 、かつ正の応力軸性値の場合 η= P σ VONM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH3oaAcaqG9aWaaSaaaeaacqGHsislcaWGqbaabaGaeq4Wdm3a aSbaaSqaaiaadAfacaWGpbGaamOtaiaad2eaaeqaaaaaaaa@3F96@

    • 最大時間 ≥ Time_max
    • 最小要素時間ステップ ≤ dtmin/DT/NODAオプションでは使用できません)。
    • 相当応力:

      σ eq Sig_maxfct_I D sm ( ε ˙ ε ˙ sm ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGXbaabeaakiabgwMiZcbaaaaaaaaapeGaam4u aiaadMgacaWGNbGaai4xaiaad2gacaWGHbGaamiEa8aacqGHflY1ca WGMbGaam4yaiaadshacaGGFbGaamysaiaadseadaWgaaWcbaGaam4C aiaad2gaaeqaaOWaaeWaaeaadaWcaaqaaiqbew7aLzaacaaabaGafq yTduMbaiaadaWgaaWcbaGaam4Caiaad2gaaeqaaaaaaOGaayjkaiaa wMcaaaaa@52F7@

    • Tuler-Butcherモデル:

      0 t [ max( 0,σ1Sigr ) ] 2 dtK MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WadaqaaiGac2gacaGGHbGaaiiEamaabmaabaGaaGimaiaacYcacqaH dpWCcaaIXaGaeyOeI0Iaam4uaiaadMgacaWGNbGaamOCaaGaayjkai aawMcaaaGaay5waiaaw2faaaWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakmaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyyzImRaam 4saaaa@4E17@

      ここで、 σ1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ymaaaa@3877@ は主応力です。

    • 最大主ひずみ:

      ε1EpsPS_maxfct_I D ps ( ε ˙ ε ˙ ps ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ymaiabgwMiZcbaaaaaaaaapeGaamyraiaadchacaWGZbGaamiuaiaa dofacaGGFbGaamyBaiaadggacaWG4bWdaiabgwSixlaadAgacaWGJb GaamiDaiaac+facaWGjbGaamiramaaBaaaleaacaWGWbGaam4Caaqa baGcdaqadaqaamaalaaabaGafqyTduMbaiaaaeaacuaH1oqzgaGaam aaBaaaleaacaWGWbGaam4CaaqabaaaaaGccaGLOaGaayzkaaaaaa@5338@

    • 実効ひずみ:

      2 3 ε i j ' ε i j ' E p s _ e f f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada WcaaqaaiaaikdaaeaacaaIZaaaaaWcbeaakiabew7aLnaaDaaaleaa caWGPbGaamOAaaqaaiaacEcaaaGccqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaGGNaaaaOGaeyyzImleaaaaaaaaa8qacaWGfbGaamiC aiaadohacaGGFbGaamyzaiaadAgacaWGMbaaaa@48B0@

      ここで、 ε i j ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgacaWGQbaabaGaai4jaaaaaaa@3A52@ は偏差ひずみです。

    • 体積ひずみ:

      ε vol = ε 11 + ε 22 + ε 33 Eps_vol MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadAhacaWGVbGaamiBaaqabaGccqGH9aqpcqaH1oqzdaWg aaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaai aaikdacaaIYaaabeaakiabgUcaRiabew7aLnaaBaaaleaacaaIZaGa aG4maaqabaGccqGHLjYSqaaaaaaaaaWdbiaadweacaWGWbGaam4Cai aac+facaWG2bGaam4BaiaadYgaaaa@4FDF@

    • 最小主ひずみ:

      ε 3 | Eps_min | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaiodaaeqaaOGaeyizImQaeyOeI0YaaqWaaeaaqaaaaaaa aaWdbiaadweacaWGWbGaam4Caiaac+facaWGTbGaamyAaiaad6gaa8 aacaGLhWUaayjcSdaaaa@44F3@

    • 最大テンソルせん断ひずみ:

      γ 1 = ( ε 1 ε 3 ) 2 Shear MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiabew7a LnaaBaaaleaacaaIXaaabeaakiabgkHiTiabew7aLnaaBaaaleaaca aIZaaabeaaaOGaayjkaiaawMcaaaqaaiaaikdaaaGaeyyzImleaaaa aaaaa8qacaWGtbGaamiAaiaadwgacaWGHbGaamOCaaaa@487C@

    • 混合モードの破壊基準:
      • γ 12 = ( ε 1 ε 2 ) 2 fct_I D g12 ( Siz e el El_ref ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIYaaabeaakiabg2da9maalaaabaWaaeWaaeaa cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH1oqzdaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaaIYaaaaiabgwMi ZcbaaaaaaaaapeGaamOzaiaadogacaWG0bGaai4xaiaadMeacaWGeb WdamaaBaaaleaapeGaam4zaiaaigdacaaIYaaapaqabaGcdaqadaqa amaalaaabaGaam4uaiaadMgacaWG6bGaamyzamaaBaaaleaacaWGLb GaamiBaaqabaaakeaacaWGfbGaamiBaiaac+facaWGYbGaamyzaiaa dAgaaaaacaGLOaGaayzkaaaaaa@597C@ 、右記の場合; 2( ε 2 ε 1 )0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmaiabgsMiJoaabmaabaWaaSaaaeaacqaH1oqzdaWgaaWcbaGaaGOm aaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqabaaaaaGccaGLOa GaayzkaaGaeyizImQaeyOeI0IaaGimaiaac6cacaaI1aaaaa@44EE@
      • γ 13 = ( ε 1 ε 3 ) 2 fct_I D g13 ( Siz e el El_ref ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIZaaabeaakiabg2da9maalaaabaWaaeWaaeaa cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH1oqzdaWgaa WcbaGaaG4maaqabaaakiaawIcacaGLPaaaaeaacaaIYaaaaiabgwMi ZcbaaaaaaaaapeGaamOzaiaadogacaWG0bGaai4xaiaadMeacaWGeb WdamaaBaaaleaapeGaam4zaiaaigdacaaIZaaapaqabaGcdaqadaqa amaalaaabaGaam4uaiaadMgacaWG6bGaamyzamaaBaaaleaacaWGLb GaamiBaaqabaaakeaacaWGfbGaamiBaiaac+facaWGYbGaamyzaiaa dAgaaaaacaGLOaGaayzkaaaaaa@597F@ 、右記の場合; 0.5( ε 2 ε 1 )1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG imaiaac6cacaaI1aGaeyizIm6aaeWaaeaadaWcaaqaaiabew7aLnaa BaaaleaacaaIYaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIXaaabe aaaaaakiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4400@
      • ε 1 f c t _ I D e 1 c ( S i z e e l E l _ r e f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaeyyzImleaaaaaaaaa8qacaWGMbGaam4y aiaadshacaGGFbGaamysaiaadseapaWaaSbaaSqaa8qacaWGLbGaaG ymaiaadogaa8aabeaakmaabmaabaWaaSaaaeaacaWGtbGaamyAaiaa dQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaOqaaiaadweaca WGSbGaai4xaiaadkhacaWGLbGaamOzaaaaaiaawIcacaGLPaaaaaa@4F71@ 、右記の場合; 0.5 ( ε 2 ε 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG imaiaac6cacaaI1aGaeyizIm6aaeWaaeaadaWcaaqaaiabew7aLnaa BaaaleaacaaIYaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIXaaabe aaaaaakiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4400@
        ここで、
        ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@ および ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@
        面内の最大主ひずみと最小主ひずみ
        ε 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@
        板厚方向のひずみ
        S i z e e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3D1E@
        特性要素寸法
    • 成形限界図(FLD):
      • Itab=1の場合: ( ε 1 , ε 2 ) T a b _ I D f l d ( ε ˙ E p s _ d o t _ f l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabew 7aLnaaBaaaleaacaaIXaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaGGPaGaeyyzImleaaaaaaaaa8qacaWGubGaamyyai aadkgacaGGFbGaamysaiaadseapaWaaSbaaSqaa8qacaWGMbGaamiB aiaadsgaa8aabeaakiaacIcadaWcaaqaaiqbew7aLzaacaaabaWdbi aadweacaWGWbGaam4Caiaac+facaWGKbGaam4BaiaadshacaGGFbGa amOzaiaadYgacaWGKbaaa8aacaGGPaaaaa@54B2@
      • Itab=2の場合: ( ε 1 , ε 2 ) T a b _ I D f l d ( S i z e e l E l _ r e f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabew 7aLnaaBaaaleaacaaIXaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaGGPaGaeyyzImleaaaaaaaaa8qacaWGubGaamyyai aadkgacaGGFbGaamysaiaadseapaWaaSbaaSqaa8qacaWGMbGaamiB aiaadsgaa8aabeaakiaacIcadaWcaaqaaiaadofacaWGPbGaamOEai aadwgadaWgaaWcbaGaamyzaiaadYgaaeqaaaGcbaWdbiaadweacaWG SbGaai4xaiaadkhacaWGLbGaamOzaaaapaGaaiykaaaa@5414@
        ここで、
        ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@ および ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@
        面内の最大主ひずみと最小主ひずみ
        S i z e e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3D1E@
        特性要素寸法
    • Nstep回のサイクルで応力が低減された後に、要素が削除されます。
    • 最小薄化ベースの基準:
      • Thinning > 0の場合、板厚方向の積分点の薄化 ≤ -|薄化|であると、シェル要素は削除されます。
      • Thinning < 0の場合、平均板厚薄化 ≤ -|薄化|であると、シェル要素は削除されます。
      • ソリッドについては、 ε z z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQhacaWG6baabeaaaaa@39CA@ ≤ -|薄化|の場合、要素は削除されます。
    • 最大要素温度 ≥ Tmax
  3. Volfracは、完全積分および高次のソリッドとシェルに対して使用されます。これは、損傷体積率(関連する体積の損傷積分点の合計など)値を表し、ここに指定された値に達すると要素は削除されます。
  4. 低減積分線形シェル要素については、P_thickfailの値に基づいて削除されます。P_thickfail > 0の場合、板厚方向の破壊された積分点の比率がP_thickfail以上になると、要素が破壊されて削除されます。 破壊モデルで定義されたP_thickfailは、シェルプロパティで定義された値を上書きします。
  5. NCSで指定された数の条件に達すると、積分点の破壊が始まります。その後、Nstep回のサイクルで積分点の応力がゼロに低減されます。
  6. 次の係数を使用した要素サイズ依存性:(1)
    f a c t o r e l = F s c a l e e l f c t _ I D e l ( S i z e e l E l _ r e f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaam yyaiaadogacaWG0bGaam4BaiaadkhadaWgaaWcbaGaamyzaiaadYga aeqaaOGaeyypa0JaamOraiaadohacaWGJbGaamyyaiaadYgacaWGLb WaaSbaaSqaaiaadwgacaWGSbaabeaakiabgwSixdbaaaaaaaaapeGa amOzaiaadogacaWG0bGaai4xaiaadMeacaWGebWdamaaBaaaleaape GaamyzaiaadYgaa8aabeaakmaabmaabaWaaSaaaeaacaWGtbGaamyA aiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaOqaaiaadw eacaWGSbGaai4xaiaadkhacaWGLbGaamOzaaaaaiaawIcacaGLPaaa aaa@5D41@

    ここで、 S i z e e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3D1E@ は特性要素サイズです。

  7. H3DファイルのANIMのポスト処理結果では、変数フィールドDAMAを使用できます。/FAIL/GENE1では、損傷変数は次の比率を使用して計算されます。(2)
    D = N c r i t N C S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maalaaabaGaamOtaiaadogacaWGYbGaamyAaiaadshaaeaacaWG obGaam4qaiaadofaaaaaaa@3EE2@
    ここで、
    N c r i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaado gacaWGYbGaamyAaiaadshaaaa@3A90@
    積分点が達する指定された基準の数。
    N C S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaado gacaWGYbGaamyAaiaadshaaaa@3A90@
    積分点の破壊が開始される基準の数。
    例えば、3つの基準が入力で指定されており、NCS = 3の場合に、積分点がこれらの基準のうち2つに達すると、この損傷変数の値は D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaado gacaWGYbGaamyAaiaadshaaaa@3A90@ = 0.667になります。