/FAIL/CONNECT

ブロックフォーマットキーワード 変位基準および / またはエネルギー基準を使用してCONNECTION材料のための破壊モデルを記述します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/CONNECT/mat_ID/unit_ID
u ¯ maxN MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamOtaaqabaaaaa@3C4D@ expN α N R_fct_IDN Ifail Ifail_so ISYM
u ¯ maxT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaa@3C53@ expT α T R_fct_IDT      
EImax ENmax ETmax Nn Nt
Tmax Nsoft AREAscale        
オプションの行
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子

(整数、最大10桁)

 
u ¯ max T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaa@3C53@ 法線方向の破壊相対変位

デフォルト = 1030(実数)

 
expN 法線方向の破壊指数パラメータ

デフォルト = 1.0(実数)

 
α N 法線方向スケールファクター

デフォルト = 1.0(実数)

 
R_fct_IDN 法線方向の破壊スケールファクターに対する変位速度の関数 f N ( u ¯ ˙ N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaad6eaaeqaaOWaaeWaceaaceWG1bGbaeHbaiaadaWgaaWc baGaamOtaaqabaaakiaawIcacaGLPaaaaaa@3C01@ の識別子

(整数)

 
Ifail 破壊定式化フラグ 2
= 0(デフォルト)
1方向性破壊(連成破壊定式化)
= 1
多方向性破壊(非連成破壊定式化)

(整数)

 
Ifail_so ソリッド破壊フラグ
= 1(デフォルト)
1つの積分点が破壊基準に達すると、ソリッド要素は削除されます。
= 2
全積分点が破壊基準に達すると、ソリッド要素は削除されます。

(整数)

 
ISYM 圧縮のための破断非アクティブ化フラグ
= 0(デフォルト)
引張および圧縮で同じ挙動
= 1
圧縮の場合は破壊を非アクティブ化

(整数)

 
u ¯ max T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaa@3C53@ 接平面の破壊相対変位

デフォルト = 1030(実数)

 
expT 接平面の破壊指数パラメータ

デフォルト = 1.0(実数)

 
α T 接平面のスケールファクター

デフォルト = 1.0(実数)

 
R_fct_IDT 接平面の破壊スケールファクターに対する変位速度の関数 f T ( u ¯ ˙ T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadsfaaeqaaOWaaeWaceaaceWG1bGbaeHbaiaadaWgaaWc baGaamivaaqabaaakiaawIcacaGLPaaaaaa@3C0D@ の識別子

(整数)

 
EImax サーフェス単位あたりの破壊内部エネルギー

デフォルト = 1030(実数)

[ k g s 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaacUgacaGGNbaabaGaam4CamaaCaaaleqabaGaaGOmaaaa aaaakiaawUfacaGLDbaaaaa@3BBB@
ENmax サーフェス単位あたりの法線破壊内部エネルギー

デフォルト = 1030(実数)

[ k g s 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaacUgacaGGNbaabaGaam4CamaaCaaaleqabaGaaGOmaaaa aaaakiaawUfacaGLDbaaaaa@3BBB@
ETmax サーフェス単位あたりの接線破壊内部エネルギー

デフォルト = 1030(実数)

[ k g s 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaacUgacaGGNbaabaGaam4CamaaCaaaleqabaGaaGOmaaaa aaaakiaawUfacaGLDbaaaaa@3BBB@
Nn 法線エネルギー破壊規準の指数

デフォルト = 1.0(実数)

 
Nt 接線エネルギー破壊規準の指数

デフォルト = 1.0(実数)

 
Tmax エネルギー破壊規準の継続時間パラメータ

(実数)

[ s ]
Nsoft 破壊の軟化指数

デフォルト = 1.0(実数)

 
AREAscale 面積増大の破壊スケールファクター 6

デフォルト = 0.0、このオプションは使用されない(実数)

 
fail_ID 破壊基準識別子 4

(整数、最大10桁)

 

例(Spotweld)

#RADIOSS STARTER
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW59/1/1
spotweld
#              RHO_I
              7.9E-9
#                  E                   G     Imass
               21000               21000         0
#   NB_fct   Fsmooth                Fcut
         1         1                   0
# YFun_IDN  YFun_IDT              SR_ref          Fscale_yld
         1         2                   0                   0
/FAIL/CONNECT/1
#          EPS_MAX_N               EXP_N             ALPHA_N R_fct_IDN     Ifail  Ifail_so      ISYM
                   1                   0                   0         0         0         1         0
#          EPS_MAX_T               EXP_T             ALPHA_T R_fct_IDT
                 1.8                   0                   0         0
#              EIMAX               ENMAX               ETMAX                  Nn                  Nt
                   0                   0                   0                   0                   0
#               Tmax               Nsoft           AREAscale
                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
New_function
#                  X                   Y
                   0                 250                                                            
                   1                 350                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
New_function
#                  X                   Y
                   0                 350                                                            
                   1                 350                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. この破壊モデルは、結合材料/MAT/LAW59 (CONNECT)とのみ適合性があります。
  2. 破壊基準:
    相対変位に基づく場合:
    • Ifail=0:1方向性定式化(非連成破壊定式化)(1)
      C s ( t ) = max ( | u ¯ N u ¯ max N α N f N ( u ¯ ˙ N ) | exp N , | u ¯ T u ¯ max T α T f T ( u ¯ ˙ T ) | exp T ) > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbGaam 4CaiaacIcacaWG0bGaaiykaiabg2da9iGac2gacaGGHbGaaiiEamaa bmaabaWaaqWaceaadaWcaaqaaiqadwhagaqeamaaBaaaleaacaWGob aabeaaaOqaaiqadwhagaqeamaaBaaaleaaciGGTbGaaiyyaiaacIha caWGobaabeaaaaGccqGHflY1cqaHXoqydaWgaaWcbaGaamOtaaqaba GccqGHflY1ciGGMbWaaSbaaSqaaiaad6eaaeqaaOWaaeWaceaaceWG 1bGbaeHbaiaadaWgaaWcbaGaamOtaaqabaaakiaawIcacaGLPaaaai aawEa7caGLiWoadaahaaWcbeqaaiGacwgacaGG4bGaaiiCamaaBaaa meaacaWGobaabeaaaaGccaGGSaWaaqWaceaadaWcaaqaaiqadwhaga qeamaaBaaaleaacaWGubaabeaaaOqaaiqadwhagaqeamaaBaaaleaa ciGGTbGaaiyyaiaacIhacaWGubaabeaaaaGccqGHflY1cqaHXoqyda WgaaWcbaGaamivaaqabaGccqGHflY1ciGGMbWaaSbaaSqaaiaadsfa aeqaaOWaaeWaceaaceWG1bGbaeHbaiaadaWgaaWcbaGaamivaaqaba aakiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiGacwga caGG4bGaaiiCamaaBaaameaacaWGubaabeaaaaaakiaawIcacaGLPa aacqGH+aGpcaaIXaaaaa@78C8@
    • Ifail=1:多方向性定式化(連成破壊定式化)(2)
      C s ( t ) = | u ¯ N u ¯ max N α N f N ( u ¯ ˙ N ) | exp N + | u ¯ T u ¯ max T α T f T ( u ¯ ˙ T ) | exp T > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbGaam 4CaiaacIcacaWG0bGaaiykaiabg2da9maaemGabaWaaSaaaeaaceWG 1bGbaebadaWgaaWcbaGaamOtaaqabaaakeaaceWG1bGbaebadaWgaa WcbaGaciyBaiaacggacaGG4bGaamOtaaqabaaaaOGaeyyXICTaeqyS de2aaSbaaSqaaiaad6eaaeqaaOGaeyyXICTaciOzamaaBaaaleaaca WGobaabeaakmaabmGabaGabmyDayaaryaacaWaaSbaaSqaaiaad6ea aeqaaaGccaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaaci GGLbGaaiiEaiaacchadaWgaaadbaGaamOtaaqabaaaaOGaey4kaSYa aqWaceaadaWcaaqaaiqadwhagaqeamaaBaaaleaacaWGubaabeaaaO qaaiqadwhagaqeamaaBaaaleaaciGGTbGaaiyyaiaacIhacaWGubaa beaaaaGccqGHflY1cqaHXoqydaWgaaWcbaGaamivaaqabaGccqGHfl Y1ciGGMbWaaSbaaSqaaiaadsfaaeqaaOWaaeWaceaaceWG1bGbaeHb aiaadaWgaaWcbaGaamivaaqabaaakiaawIcacaGLPaaaaiaawEa7ca GLiWoadaahaaWcbeqaaiGacwgacaGG4bGaaiiCamaaBaaameaacaWG ubaabeaaaaGccqGH+aGpcaaIXaaaaa@749D@
    エネルギーに基づく場合:(3)
    C e ( t ) = max [ ( E n E N max ) N n + ( E t E T max ) N t , E I E I m a x ] > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qaiaadwgacaGGOaGaamiDaiaacMcacqGH9aqpciGGTbGaaiyy aiaacIhadaWadaqaamaabmaabaWaaSaaaeaacaWGfbGaamOBaaqaai aadweacaWGobWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaWGobWaaSbaaWqaaiaad6gaae qaaaaakiabgUcaRmaabmaabaWaaSaaaeaacaWGfbGaamiDaaqaaiaa dweacaWGubWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaWGobWaaSbaaWqaaiaadshaaeqa aaaakiaacYcadaWcaaqaaiaadweacaWGjbaabaGaamyraiaadMeada WgaaWcbaGaaiyBaiaadggacaWG4baabeaaaaaakiaawUfacaGLDbaa cqGH+aGpcaaIXaaaaa@607B@
    ここで、
    E I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyraiaadMeaaaa@3A44@
    結合要素エリア毎の内部エネルギー。
    E n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamyraiaad6eaaaa@3A49@
    結合要素エリア毎の法線方向の内部エネルギー。
    E t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamyraiaad6eaaaa@3A49@
    結合要素エリア毎のせん断方向の内部エネルギー。
  3. 損傷変数、 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamyraiaad6eaaaa@3A49@ は、相対変位またはエネルギーによって生成される損傷累積の最大値として定義されます:(4)
    D max = max [ 0 t ( C s ( t ) | C s ( t ) > 1 ) d t , 0 t ( C e ( t ) | C e ( t ) > 1 ) d t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpciGGTbGaaiyy aiaacIhadaWadaqaamaapedabaWaaeWaaeaadaabcaqaaiGacoeaca WGZbGaciikaiaadshacaGGPaaacaGLiWoadaWgaaWcbaGaci4qaiaa dohaciGGOaGaamiDaiaacMcacqGH+aGpcaaIXaaabeaaaOGaayjkai aawMcaaiaadsgacaWG0baaleaacaaIWaaabaGaamiDaaqdcqGHRiI8 aOGaaiilamaapedabaWaaeWaaeaadaabcaqaaiGacoeacaWGLbGaci ikaiaadshacaGGPaaacaGLiWoadaWgaaWcbaGaci4qaiaadwgaciGG OaGaamiDaiaacMcacqGH+aGpcaaIXaaabeaaaOGaayjkaiaawMcaai aadsgacaWG0baaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aaGccaGL BbGaayzxaaaaaa@66A5@
    次の場合、要素は削除されます(または、局所積分点での応力が0に設定されます):(5)
    D max T max

    T max がデフォルト値の場合、破壊は直ちに起こります。

    そうでない場合、 T max > D max > 0 だと、次のように軟化が適用されます(全方向):(6)
    σ = σ ( 1 D T max ) N s o f t
  4. fail_IDは、/STATE/BRICK/FAILおよび/INIBRI/FAILで使用されます。デフォルト値はありません。この行が空白の場合、/INIBRI/FAIL内の破壊モデル変数のために出力される値はありません(/STATE/BRICK/FAILオプションで.staファイルに書き込まれます)。
  5. 以下のアニメーション(/ANIM/BRICK)および時刻歴(/TH/BRICK)出力は、USR(すべての積分点の最大値)を用いて使用できます。
      EImax(のみ) ENmaxまたはETmax(のみ) EIおよび

    (ENmaxまたはETmax)

    USR1 E I E I max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaSaaaeaacaWGfbGaamysaaqaaiaadweacaWGjbWaaSbaaSqaaiGa c2gacaGGHbGaaiiEaaqabaaaaaaa@3EEC@   max [ ( E n E N max ) N n + ( E t E T max ) N t ,   E I E I max ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaciyBaiaacggacaGG4bWaamWaaeaadaqadaqaamaalaaabaGaamyr aiaad6gaaeaacaWGfbGaamOtamaaBaaaleaaciGGTbGaaiyyaiaacI haaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOtamaaBaaa meaacaWGUbaabeaaaaGccqGHRaWkdaqadaqaamaalaaabaGaamyrai aadshaaeaacaWGfbGaamivamaaBaaaleaaciGGTbGaaiyyaiaacIha aeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOtamaaBaaame aacaWG0baabeaaaaGccaGGSaGaaeiiamaalaaabaGaamyraiaadMea aeaacaWGfbGaamysamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaa aaaOGaay5waiaaw2faaaaa@5A51@
    USR2   ( E n E N max ) N n + ( E t E T max ) N t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaeWaaeaadaWcaaqaaiaadweacaWGUbaabaGaamyraiaad6eadaWg aaWcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaad6eadaWgaaadbaGaamOBaaqabaaaaOGaey4kaSYa aeWaaeaadaWcaaqaaiaadweacaWG0baabaGaamyraiaadsfadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaad6eadaWgaaadbaGaamiDaaqabaaaaaaa@4DE4@ ( E n E N max ) N n + ( E t E T max ) N t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaeWaaeaadaWcaaqaaiaadweacaWGUbaabaGaamyraiaad6eadaWg aaWcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaad6eadaWgaaadbaGaamOBaaqabaaaaOGaey4kaSYa aeWaaeaadaWcaaqaaiaadweacaWG0baabaGaamyraiaadsfadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaad6eadaWgaaadbaGaamiDaaqabaaaaaaa@4DE4@
    ここで、
    EI
    結合要素エリア毎の内部エネルギー
    En
    結合要素エリア毎の法線方向の内部エネルギー
    Et
    結合要素エリア毎のせん断方向の内部エネルギー
      Ifail=0 Ifail=1
    USR3 max [ f N ( ε ˙ N ) ε N ε max N ,    f T ( ε ˙ T ) ε T ε max T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yyaiaacIhadaWadaqaaiGacAgadaWgaaWcbaGaamOtaaqabaGcdaqa daqaaiqbew7aLzaacaWaaSbaaSqaaiaad6eaaeqaaaGccaGLOaGaay zkaaGaeyyXIC9aaSaaaeaacqaH1oqzdaWgaaWcbaGaamOtaaqabaaa keaacqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4bGaamOtaaqaba aaaOGaaiilaiaabccacaqGGaGaciOzamaaBaaaleaacaWGubaabeaa kmaabmaabaGafqyTduMbaiaadaWgaaWcbaGaamivaaqabaaakiaawI cacaGLPaaacqGHflY1daWcaaqaaiabew7aLnaaBaaaleaacaWGubaa beaaaOqaaiabew7aLnaaBaaaleaaciGGTbGaaiyyaiaacIhacaWGub aabeaaaaaakiaawUfacaGLDbaaaaa@5EBC@ f N ( ε ˙ N ) ε N ε max N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaad6eaaeqaaOWaaeWaaeaacuaH1oqzgaGaamaaBaaaleaa caWGobaabeaaaOGaayjkaiaawMcaaiabgwSixpaalaaabaGaeqyTdu 2aaSbaaSqaaiaad6eaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiGac2ga caGGHbGaaiiEaiaad6eaaeqaaaaaaaa@4719@
    USR4 f T ( ε ˙ T ) ε T ε max T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadsfaaeqaaOWaaeWaaeaacuaH1oqzgaGaamaaBaaaleaa caWGubaabeaaaOGaayjkaiaawMcaaiabgwSixpaalaaabaGaeqyTdu 2aaSbaaSqaaiaadsfaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiGac2ga caGGHbGaaiiEaiaadsfaaeqaaaaaaaa@4731@ c 4 = f T ( ε ˙ T ) ε T ε max T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaaG inaiabg2da9iGacAgadaWgaaWcbaGaamivaaqabaGcdaqadaqaaiqb ew7aLzaacaWaaSbaaSqaaiaadsfaaeqaaaGccaGLOaGaayzkaaGaey yXIC9aaSaaaeaacqaH1oqzdaWgaaWcbaGaamivaaqabaaakeaacqaH 1oqzdaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaaaa@49DD@
    USR5   | ε N ε max N α N f N ( ε ˙ N ) | exp N + | ε T ε max T α T f T ( ε ˙ T ) | exp T > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdiqaam aalaaabaGaeqyTdu2aaSbaaSqaaiaad6eaaeqaaaGcbaGaeqyTdu2a aSbaaSqaaiGac2gacaGGHbGaaiiEaiaad6eaaeqaaaaakiabgwSixl abeg7aHnaaBaaaleaacaWGobaabeaakiabgwSixlGacAgadaWgaaWc baGaamOtaaqabaGcdaqadiqaaiqbew7aLzaacaWaaSbaaSqaaiaad6 eaaeqaaaGccaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaa ciGGLbGaaiiEaiaacchadaWgaaadbaGaamOtaaqabaaaaOGaae4kam aaemGabaWaaSaaaeaacqaH1oqzdaWgaaWcbaGaamivaaqabaaakeaa cqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4bWaaSbaaWqaaiaads faaeqaaaWcbeaaaaGccqGHflY1cqaHXoqydaWgaaWcbaGaamivaaqa baGccqGHflY1ciGGMbWaaSbaaSqaaiaadsfaaeqaaOWaaeWaceaacu aH1oqzgaGaamaaBaaaleaacaWGubaabeaaaOGaayjkaiaawMcaaaGa ay5bSlaawIa7amaaCaaaleqabaGaciyzaiaacIhacaGGWbWaaSbaaW qaaiaadsfaaeqaaaaakiabg6da+iaaigdaaaa@7309@
    USR6 S O F T = ( 1 D T max ) N s o f t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4uaiaad+eacaWGgbGaamivaiabg2da9maabmGabaGaaGymaiab gkHiTmaalaaabaGaamiraaqaaiaadsfadaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6ea daWgaaadbaGaam4Caiaad+gacaWGMbGaamiDaaqabaaaaaaa@4A0F@ S O F T = ( 1 D T max ) N s o f t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4uaiaad+eacaWGgbGaamivaiabg2da9maabmGabaGaaGymaiab gkHiTmaalaaabaGaamiraaqaaiaadsfadaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6ea daWgaaadbaGaam4Caiaad+gacaWGMbGaamiDaaqabaaaaaaa@4A0F@
  6. 面積は、ソリッド要素の上下のサーフェスの平均値として計算されます。実際の面積が、初期面積にAREAscale係数を掛けた値に到達すると、要素全体が削除されます。結合要素に接合した要素が破壊すると、このオプションは、結合要素の大変形による節点のシューティングを防止するために使用できます。