Processing math: 100%

/MAT/LAW120 (TAPO)

ブロックフォーマットキーワード これは、ポリマー接着剤用の非関連弾塑性モデルです。この構成モデルは、フォンミーゼスタイプまたは圧縮でのDrucker-Pragerタイプに落とし込めるI1-J2基準に基づいています。

このモデルを使用して、せん断と引張の組み合わせを伴う複雑な荷重経路下の接着剤の機械的挙動を表すことができます。この材料モデルには、塑性ひずみ、軸性、ひずみ速度に依存する非線形損傷モデルが含まれます。この材料は、ソリッド六面体要素(/BRICK)にのみ適用できます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW120/mat_ID/unit_IDまたは/MAT/TAPO/mat_ID/unit_ID
mat_title
ρi                
E ν Iform Itrx Idam      
Table_ID Xscale Yscale          
τ0 Q β H    
A1F A2F A1H A2H AS
C ˙εref ˙εmax        
D1c D2c D1f D2f    
Dtrx DJC Exp_n        

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位の識別子。

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρi 初期密度

(実数)

[kgm3]
E ヤング(剛性)率

(実数)

[Pa]
ν ポアソン比

(実数)

 
Iform 降伏基準定式化のフラグ。
= 1(デフォルト)
圧縮でのDrucker-Pragerモデル。
= 2
圧縮のフォンミーゼス応力

(整数)

 
Itrx 圧縮での損傷の軸性に対する依存性のフラグ。
= 1
損傷は、引張と圧縮で軸性に依存します。
= 2(デフォルト)
損傷は、引張においてのみ、軸性に依存します。

(整数)

 
Idam 損傷モデルにおけるひずみ速度定義のフラグ。
= 1
無損傷塑性ひずみ速度を使用して定義された損傷係数。
= 2(デフォルト)
損傷塑性ひずみ速度を使用して定義された損傷係数。

(整数)

 
Table_ID 塑性ひずみ、ひずみ速度、温度の関数としての降伏応力を定義するテーブルの識別子。

(整数)

 
Xscale Table_ID内のひずみ速度変数のスケールファクター。

(実数)

[Hz]
Yscale Table_IDで定義された降伏応力値のスケールファクター。

(実数)

[Pa]
τ0 初期せん断降伏応力。

(実数)

[Pa]
Q Voce硬化係数

(実数)

[Pa]
β 非線形Voce硬化指数。

デフォルト = 1.0(実数)

 
H 線形硬化硬化指数。

デフォルト = 1.0(実数)

[Pa]
A1F 降伏関数パラメータ。

(実数)

 
A2F 降伏関数パラメータ。

(実数)

 
A1H 降伏関数ひずみ硬化パラメータ。

(実数)

 
A2H 降伏関数ひずみ硬化パラメータ。

(実数)

 
AS 静水項の塑性流れ関数パラメータ。

(実数)

 
C 硬化のJohnson-Cookひずみ速度係数。

(実数)

 
˙εref Johnson-Cook項の準-静的しきい値ひずみ速度。

(実数)

[Hz]
˙εmax Johnson-Cook項の最大動的しきい値ひずみ速度。

(実数)

[Hz]
D1c 損傷開始のJohnson-Cookパラメータ。

(実数)

 
D2c 損傷開始のJohnson-Cookパラメータ。

(実数)

 
D1f 破壊ひずみのJohnson-Cookパラメータ。

(実数)

 
D2f 破壊ひずみのJohnson-Cookパラメータ。

(実数)

 
Dtrx 軸性項のJohnson-Cook損傷パラメータ。

(実数)

 
DJC 損傷のJohnson-Cookひずみ速度パラメータ。

(実数)

 
Exp_n 損傷ひずみ速度依存性の指数係数。

(実数)

 

例(接着性ポリマー)

コメント

  1. 降伏関数は、Iformフラグに応じて記述されます:
    • Iform = 1:Drucker-Prager:(1)
      f= J2+a13τ0I1+a23I12τ2y

      a1=A1F+A1Hεpl および a2=A2F+A2Hεpl

    • Iform = 2: von Mises:(2)
      f= J2+A2F3I1+32A1FA2Fτ02(τ2y+A21FA2Fτ204)

    これら2つの関数は、損傷応力テンソルについて記述されます: σd=σ/(1D)

    ここで、 D は等方性損傷を表します。

  2. 塑性ポテンシャルは次のように表されます:(3)
    f*= J2+AS3I12
  3. 降伏応力は速度に依存します:
    • Table_ID ≠ 0の場合、降伏応力は表形式です。
    • Table_ID = 0の場合、降伏応力は解析的に求められます。
    (4)
    τy=(τ0+R)g(˙ε)
    ここで、R=Q(1exp(βεpl))+Hεpl .(5)
    g(˙ε)=1+C[ln(˙ε˙εref)ln(˙ε˙εmax)]
  4. 損傷開始と破断は、軸性の関数です: σ*=σmˉσ ここで、 σm=I13 および ˉσeq=3J2 です。(6)
    ˙D=nεplεcεfεcn1˙εplεfεc
    (7)
    εc=[D1c+D2cexp(Dtrxσ*)](1+DJCln(˙ε˙εref))
    (8)
    εf=[D1f+D2fexp(Dtrxσ*)](1+DJCln(˙ε˙εref))