/MAT/LAW120 (TAPO)

ブロックフォーマットキーワード これは、ポリマー接着剤用の非関連弾塑性モデルです。この構成モデルは、フォンミーゼスタイプまたは圧縮でのDrucker-Pragerタイプに落とし込めるI1-J2基準に基づいています。

このモデルを使用して、せん断と引張の組み合わせを伴う複雑な荷重経路下の接着剤の機械的挙動を表すことができます。この材料モデルには、塑性ひずみ、軸性、ひずみ速度に依存する非線形損傷モデルが含まれます。この材料は、ソリッド六面体要素(/BRICK)にのみ適用できます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW120/mat_ID/unit_IDまたは/MAT/TAPO/mat_ID/unit_ID
mat_title
ρ i                
E ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBaa a@3816@ Iform Itrx Idam      
Table_ID Xscale Yscale          
τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@38E5@ Q β H    
A1F A2F A1H A2H AS
C ε ˙ ref MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGYbGaamyzaiaadAgaa8aa beaaaaa@3AE2@ ε ˙ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aa beaaaaa@3AEB@        
D1c D2c D1f D2f    
Dtrx DJC Exp_n        

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID (オプション)単位の識別子。

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度

(実数)

[ kg m 3 ]
E ヤング(剛性)率

(実数)

[ Pa ]
ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBaa a@3816@ ポアソン比

(実数)

 
Iform 降伏基準定式化のフラグ。
= 1(デフォルト)
圧縮でのDrucker-Pragerモデル。
= 2
圧縮のフォンミーゼス応力

(整数)

 
Itrx 圧縮での損傷の軸性に対する依存性のフラグ。
= 1
損傷は、引張と圧縮で軸性に依存します。
= 2(デフォルト)
損傷は、引張においてのみ、軸性に依存します。

(整数)

 
Idam 損傷モデルにおけるひずみ速度定義のフラグ。
= 1
無損傷塑性ひずみ速度を使用して定義された損傷係数。
= 2(デフォルト)
損傷塑性ひずみ速度を使用して定義された損傷係数。

(整数)

 
Table_ID 塑性ひずみ、ひずみ速度、温度の関数としての降伏応力を定義するテーブルの識別子。

(整数)

 
Xscale Table_ID内のひずみ速度変数のスケールファクター。

(実数)

[Hz]
Yscale Table_IDで定義された降伏応力値のスケールファクター。

(実数)

[ Pa ]
τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@38E5@ 初期せん断降伏応力。

(実数)

[ Pa ]
Q Voce硬化係数

(実数)

[ Pa ]
β 非線形Voce硬化指数。

デフォルト = 1.0(実数)

 
H 線形硬化硬化指数。

デフォルト = 1.0(実数)

[ Pa ]
A1F 降伏関数パラメータ。

(実数)

 
A2F 降伏関数パラメータ。

(実数)

 
A1H 降伏関数ひずみ硬化パラメータ。

(実数)

 
A2H 降伏関数ひずみ硬化パラメータ。

(実数)

 
AS 静水項の塑性流れ関数パラメータ。

(実数)

 
C 硬化のJohnson-Cookひずみ速度係数。

(実数)

 
ε ˙ r e f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGYbGaamyzaiaadAgaa8aa beaaaaa@3AE2@ Johnson-Cook項の準-静的しきい値ひずみ速度。

(実数)

[Hz]
ε ˙ m a x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aa beaaaaa@3AEB@ Johnson-Cook項の最大動的しきい値ひずみ速度。

(実数)

[Hz]
D1c 損傷開始のJohnson-Cookパラメータ。

(実数)

 
D2c 損傷開始のJohnson-Cookパラメータ。

(実数)

 
D1f 破壊ひずみのJohnson-Cookパラメータ。

(実数)

 
D2f 破壊ひずみのJohnson-Cookパラメータ。

(実数)

 
Dtrx 軸性項のJohnson-Cook損傷パラメータ。

(実数)

 
DJC 損傷のJohnson-Cookひずみ速度パラメータ。

(実数)

 
Exp_n 損傷ひずみ速度依存性の指数係数。

(実数)

 

例(接着性ポリマー)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/20
Material model units
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/TAPO/1/20
Adhesive polymer
#              RHO_I
              1.2E-9                   0
#                  E                  Nu     Iform      Itrx      Idam
                1588                 .34         1         0         0          
#               TAU0                   Q                beta                   H
               19.66               2.746               24.98               13.35
#                A1F                 A2F                 A1H                 A2H                  AS
               0.446               0.218                0.24                 0.1               0.338
#                 CC            Epsp_ref            Epsp_max
                 0.1               0.002                1726
#                D1c                 D2c                 D1f                 D2f
               0.345               1.094               6.935                0.00 
#              D_trx                D_JC               Exp_n
               0.001               1.044                   0

コメント

  1. 降伏関数は、Iformフラグに応じて記述されます:
    • Iform = 1:Drucker-Prager:(1)
      f =   J 2 + a 1 3 τ 0 I 1 + a 2 3 I 1 2 τ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaacckacaWGkbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiabgUcaRmaalaaapaqaa8qacaWGHbWdamaaBaaaleaape GaaGymaaWdaeqaaaGcbaWdbmaakaaapaqaa8qacaaIZaaaleqaaaaa kiabes8a09aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGjbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qa caWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaaiodaaa Gaamysa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWd biaaikdaaaGccqGHsislcqaHepaDpaWaa0baaSqaa8qacaWG5baapa qaa8qacaaIYaaaaaaa@4FE2@

      a 1 = A 1 F + A 1 H ε p l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG bbWdamaaBaaaleaapeGaaGymaiaadAeaa8aabeaak8qacqGHRaWkca WGbbWdamaaBaaaleaapeGaaGymaiaadIeaa8aabeaak8qacqaH1oqz paWaaSbaaSqaa8qacaWGWbGaamiBaaWdaeqaaaaa@436F@ および a 2 = A 2F + A 2H ε pl MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaWG bbWdamaaBaaaleaapeGaaGOmaiaadAeaa8aabeaak8qacqGHRaWkca WGbbWdamaaBaaaleaapeGaaGOmaiaadIeaa8aabeaak8qacqaH1oqz paWaaSbaaSqaa8qacaWGWbGaamiBaaWdaeqaaaaa@4372@

    • Iform = 2: von Mises:(2)
      f=  J 2 + A 2F 3 I 1 + 3 2 A 1F A 2F τ 0 2 τ y 2 + A 1F 2 A 2F τ 0 2 4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaacckacaWGkbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiabgUcaRmaalaaapaqaa8qacaWGbbWdamaaBaaaleaape GaaGOmaiaadAeaa8aabeaaaOqaa8qacaaIZaaaaiaadMeapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaey4kaSYaaSaaa8aabaWdbmaaka aapaqaa8qacaaIZaaaleqaaaGcpaqaa8qacaaIYaaaamaalaaapaqa a8qacaWGbbWdamaaBaaaleaapeGaaGymaiaadAeaa8aabeaaaOqaa8 qacaWGbbWdamaaBaaaleaapeGaaGOmaiaadAeaa8aabeaaaaGcpeGa eqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaOWaaWbaaSqabeaape GaaGOmaaaakiabgkHiTmaabmaapaqaa8qacqaHepaDpaWaa0baaSqa a8qacaWG5baapaqaa8qacaaIYaaaaOGaey4kaSYaaSaaa8aabaWdbi aadgeapaWaa0baaSqaa8qacaaIXaGaamOraaWdaeaapeGaaGOmaaaa aOWdaeaapeGaamyqa8aadaWgaaWcbaWdbiaaikdacaWGgbaapaqaba aaaOWdbmaalaaapaqaa8qacqaHepaDpaWaa0baaSqaa8qacaaIWaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaI0aaaaaGaayjkaiaawMcaaa aa@60DF@

    これら2つの関数は、損傷応力テンソルについて記述されます: σ d = σ / ( 1 D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamizaaWdaeqaaOWdbiabg2da9iab eo8aZjaac+cadaqadaWdaeaapeGaaGymaiabgkHiTiaadseaaiaawI cacaGLPaaaaaa@40C1@

    ここで、 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraaaa@36D5@ は等方性損傷を表します。

  2. 塑性ポテンシャルは次のように表されます:(3)
    f * =  J 2 + A S 3 I 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0JaaiiOaiaa dQeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSYaaSaaa8 aabaWdbiaadgeapaWaaSbaaSqaa8qacaWGtbaapaqabaaakeaapeGa aG4maaaacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaS qabeaapeGaaGOmaaaaaaa@42E7@
  3. 降伏応力は速度に依存します:
    • Table_ID ≠ 0の場合、降伏応力は表形式です。
    • Table_ID = 0の場合、降伏応力は解析的に求められます。
    (4)
    τ y =( τ 0 +R )g( ε ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamyEaaWdaeqaaOWdbiabg2da9maa bmaapaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpe Gaey4kaSIaamOuaaGaayjkaiaawMcaaiaadEgadaqadaWdaeaapeGa fqyTdu2dayaacaaapeGaayjkaiaawMcaaaaa@4500@
    ここで、 R=Q( 1exp( β ε pl ) )+H ε pl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadgfadaqadaWdaeaapeGaaGymaiabgkHiTiaa bwgacaqG4bGaaeiCamaabmaapaqaa8qacqGHsislcqaHYoGycqaH1o qzpaWaaSbaaSqaa8qacaWGWbGaamiBaaWdaeqaaaGcpeGaayjkaiaa wMcaaaGaayjkaiaawMcaaiabgUcaRiaadIeacqaH1oqzpaWaaSbaaS qaa8qacaWGWbGaamiBaaWdaeqaaaaa@4CB2@ .(5)
    g( ε ˙ )=1+C[ ln( ε ˙ ε ˙ ref )ln( ε ˙ ε ˙ max ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacuaH1oqzpaGbaiaaa8qacaGLOaGaayzk aaGaeyypa0JaaGymaiabgUcaRiaadoeadaWadaWdaeaapeGaamiBai aad6gadaqadaWdaeaapeWaaSaaa8aabaWdbiqbew7aL9aagaGaaaqa a8qacuaH1oqzpaGbaiaadaWgaaWcbaWdbiaadkhacaWGLbGaamOzaa WdaeqaaaaaaOWdbiaawIcacaGLPaaacqGHsislcaWGSbGaamOBamaa bmaapaqaa8qadaWcaaWdaeaapeGafqyTdu2dayaacaaabaWdbiqbew 7aL9aagaGaamaaBaaaleaapeGaamyBaiaadggacaWG4baapaqabaaa aaGcpeGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@55D5@
  4. 損傷開始と破断は、軸性の関数です: σ * = σ m σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaeq4Wdm3damaaBaaaleaapeGaamyBaaWdaeqaaaGcbaWdbi qbeo8aZ9aagaqeaaaaaaa@3F1B@ ここで、 σ m = I 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyBaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcba Wdbiaaiodaaaaaaa@3D24@ および σ ¯ e q = 3 J 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafq4Wdm3dayaaraWaaSbaaSqaa8qacaWGLbGaamyCaaWdaeqaaOWd biabg2da9maakaaapaqaa8qacaaIZaGaamOsa8aadaWgaaWcbaWdbi aaikdaa8aabeaaa8qabeaaaaa@3E22@ です。(6)
    D ˙ = n ε p l ε c ε f ε c n 1 ε ˙ p l ε f ε c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmira8aagaGaa8qacqGH9aqpcaWGUbWaaSaaa8aabaWdbiabew7a L9aadaWgaaWcbaWdbiaadchacaWGSbaapaqabaGcpeGaeyOeI0Iaeq yTdu2damaaBaaaleaapeGaam4yaaWdaeqaaaGcbaWdbiabew7aL9aa daWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHsislcqaH1oqzpaWaaS baaSqaa8qacaWGJbaapaqabaaaaOWaaWbaaSqabeaapeGaamOBaiab gkHiTiaaigdaaaGcdaWcaaWdaeaapeGafqyTdu2dayaacaWaaSbaaS qaa8qacaWGWbGaamiBaaWdaeqaaaGcbaWdbiabew7aL9aadaWgaaWc baWdbiaadAgaa8aabeaak8qacqGHsislcqaH1oqzpaWaaSbaaSqaa8 qacaWGJbaapaqabaaaaaaa@55F3@
    (7)
    ε c = D 1 c + D 2 c exp D t r x σ * 1 + D J C l n ε ˙ ε ˙ r e f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaam4yaaWdaeqaaOWdbiabg2da9maa dmaapaqaa8qacaWGebWdamaaBaaaleaapeGaaGymaiaadogaa8aabe aak8qacqGHRaWkcaWGebWdamaaBaaaleaapeGaaGOmaiaadogaa8aa beaak8qacaqGLbGaaeiEaiaabchadaqadaWdaeaapeGaamira8aada WgaaWcbaWdbiaadshacaWGYbGaamiEaaWdaeqaaOWdbiabeo8aZ9aa daahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGaayzkaaaacaGLBbGaay zxaaWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGebWdamaaBaaaleaa peGaamOsaiaadoeaa8aabeaak8qacaWGSbGaamOBamaabmaapaqaa8 qadaWcaaWdaeaapeGafqyTdu2dayaacaaabaWdbiqbew7aL9aagaGa amaaBaaaleaapeGaamOCaiaadwgacaWGMbaapaqabaaaaaGcpeGaay jkaiaawMcaaaGaayjkaiaawMcaaaaa@5EC8@
    (8)
    ε f = D 1f + D 2f exp D trx σ * 1+ D JC ln ε ˙ ε ˙ ref MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9maa dmaapaqaa8qacaWGebWdamaaBaaaleaapeGaaGymaiaadAgaa8aabe aak8qacqGHRaWkcaWGebWdamaaBaaaleaapeGaaGOmaiaadAgaa8aa beaak8qacaqGLbGaaeiEaiaabchadaqadaWdaeaapeGaamira8aada WgaaWcbaWdbiaadshacaWGYbGaamiEaaWdaeqaaOWdbiabeo8aZ9aa daahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGaayzkaaaacaGLBbGaay zxaaWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGebWdamaaBaaaleaa peGaamOsaiaadoeaa8aabeaak8qacaWGSbGaamOBamaabmaapaqaa8 qadaWcaaWdaeaapeGafqyTdu2dayaacaaabaWdbiqbew7aL9aagaGa amaaBaaaleaapeGaamOCaiaadwgacaWGMbaapaqabaaaaaGcpeGaay jkaiaawMcaaaGaayjkaiaawMcaaaaa@5ED1@