MAT3

バルクデータエントリ 軸対称要素であるCTAXICTRIAX6CQAXICTAXIGCQAXIGおよび平面ひずみ要素であるCTPSTNCQPSTNで使用する、温度に依存しない線形の直交異方性材料の材料特性を定義します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT3 MID EX ETH EZ NUXTH NUTHZ NUZX RHO  
  GXTH GTHZ GZX AX ATH AZ TREF GE  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT3 17 3.0+7 3.1+7 3.2+7 0.33 0.28 0.30 2.0e-5  
  6.5+6 6.8+6 7.0+6 1.1e-4 1.1e-4 1.2e-4 35.5 0.19  

定義

フィールド 内容 SI単位の例
MID 固有の材料ID。
整数
この材料の識別番号を指定します。
<文字列>
この材料エントリのユーザー定義の文字列ラベルを指定します。 3

デフォルトなし(整数 > 0、または<文字列>)

 
EX, ETH, EZ それぞれx方向、面から外へ向かう方向、およびz方向のヤング率。

デフォルトなし(実数 > 0.0)

 
NUXTH, NUTHZ, NUZX ポアソン比。
NUXTH
応力がx方向の場合に、面から外へ向かう方向のひずみのポアソン比。
NUTHZ
応力が面から外へ向かう方向の場合に、z方向のひずみのポアソン比。
NUZX
応力がz方向の場合に、x方向のひずみのポアソン比。

デフォルトなし(実数)

 
RHO 質量密度。

デフォルトなし(実数)。

 
GZX x-z平面でのせん断弾性係数。

デフォルトなし(実数 > 0.0)

 
GTHZ, GXTH 一般的な軸対称要素CTAXIGおよびCQAXIGにのみ有効なせん断弾性率。GTHZはθ-z 平面におけるせん断弾性率。GXTHは、x-z平面でのせん断弾性係数。

デフォルト = GZX(実数 > 0.0または空白)

 
AX, ATH, AZ それぞれx方向、面から外へ向かう方向、およびz方向の熱膨張係数。

デフォルトなし(実数)

 
TREF 熱荷重の参照温度。

デフォルト = 空白(実数または空白)

 
GE 構造要素の減衰係数。 8

デフォルトなし(実数)

 

コメント

  1. 上記の‘z’または‘Z’のインデックスは、(a)x-z平面で解析を定義している場合は、その面上のz方向を表し、(b)x-y平面で解析を定義している場合は、その面上のy方向を表します。面から外へ向かう方向のインデックスである‘TH’は、(a)軸対称解析では円周方向 θ を表し、(b)平面ひずみ解析では板厚方向を表します。コメント7をご参照ください。
  2. 材料識別番号 / 文字列は、MAT1MAT2MAT8、およびMAT9の各エントリのすべてで固有であることが必要です。
  3. 文字列のラベルを使用すると、他のカードによって参照されている場合などに材料を視覚的に識別しやすくなります(例: プロパティのMIDフィールド)。詳細については、Bulk Data Input File内の文字列ラベルベースの入力ファイルをご参照ください。
  4. 7つの弾性係数値、EXETHEZNUXTHNUTHZNUZXGZXが存在する必要があります。GTHZおよびGXTHは、CTAXIGおよびCQAXIG軸対称要素に対してのみ有効です。
  5. NUXTHまたはNUTHZの絶対値が1.0より大きい時、警告が発せられます。
  6. x方向、面から外へ向かう方向、z方向は、材料座標系の主材料方向です。MAT3でサポートされている要素には、これらの主材料方向を基準座標系に関連付けるTHETAフィールドがあります。
  7. ひずみと応力の関係は次のように定義できます。
    1. 2D軸対称(1)
      { ε x ε y ε z γ z x } = [ 1 E X N U T H X E T H N U Z X E Z 0 N U X T H E X 1 E T H N U Z T H E Z 0 N U X Z E X N U T H Z E T H 1 E Z 0 0 0 0 1 G Z X ] { σ x σ θ σ z τ z x } + ( T T R E F ) { A X A T H A Z 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaada Gacaqaauaabeqaeeaaaaqaaiabew7aLnaaBaaaleaacaWG4baabeaa aOqaaiabew7aLnaaBaaaleaacaWG5baabeaaaOqaaiabew7aLnaaBa aaleaacaWG6baabeaaaOqaaiabeo7aNnaaBaaaleaacaWG6bGaamiE aaqabaaaaaGccaGL9baaaiaawUhaaiabg2da9maadmaabaqbaeqabq abaaaaaeaadaWcaaqaaiaaigdaaeaacaWGfbGaamiwaaaaaeaacqGH sisldaWcaaqaaiaad6eacaWGvbGaamivaiaadIeacaWGybaabaGaam yraiaadsfacaWGibaaaaqaaiabgkHiTmaalaaabaGaamOtaiaadwfa caWGAbGaamiwaaqaaiaadweacaWGAbaaaaqaaiaaicdaaeaacqGHsi sldaWcaaqaaiaad6eacaWGvbGaamiwaiaadsfacaWGibaabaGaamyr aiaadIfaaaaabaWaaSaaaeaacaaIXaaabaGaamyraiaadsfacaWGib aaaaqaaiabgkHiTmaalaaabaGaamOtaiaadwfacaWGAbGaamivaiaa dIeaaeaacaWGfbGaamOwaaaaaeaacaaIWaaabaGaeyOeI0YaaSaaae aacaWGobGaamyvaiaadIfacaWGAbaabaGaamyraiaadIfaaaaabaGa eyOeI0YaaSaaaeaacaWGobGaamyvaiaadsfacaWGibGaamOwaaqaai aadweacaWGubGaamisaaaaaeaadaWcaaqaaiaaigdaaeaacaWGfbGa amOwaaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba WaaSaaaeaacaaIXaaabaGaam4raiaadQfacaWGybaaaaaaaiaawUfa caGLDbaadaGabaqaamaaciaabaqbaeqabqqaaaaabaGaeq4Wdm3aaS baaSqaaiaadIhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXbqa baaakeaacqaHdpWCdaWgaaWcbaGaamOEaaqabaaakeaacqaHepaDda WgaaWcbaGaamOEaiaadIhaaeqaaaaaaOGaayzFaaaacaGL7baacqGH RaWkcaGGOaGaamivaiabgkHiTiaadsfacaWGsbGaamyraiaadAeaca GGPaWaaiqaaeaadaGacaqaauaabeqaeeaaaaqaaiaadgeacaWGybaa baGaamyqaiaadsfacaWGibaabaGaamyqaiaadQfaaeaacaaIWaaaaa GaayzFaaaacaGL7baaaaa@A06C@

      ここで、 N U X T H E X = N U T H X E T H , N U X Z E X = N U Z X E Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGobGaamyvaiaadIfacaWGubGaamisaaqaaiaadweacaWGybaaaiab g2da9maalaaabaGaamOtaiaadwfacaWGubGaamisaiaadIfaaeaaca WGfbGaamivaiaadIeaaaGaaiilamaalaaabaGaamOtaiaadwfacaWG ybGaamOwaaqaaiaadweacaWGybaaaiabg2da9maalaaabaGaamOtai aadwfacaWGAbGaamiwaaqaaiaadweacaWGAbaaaaaa@4F8B@ および N U T H Z E T H = N U Z T H E Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGobGaamyvaiaadsfacaWGibGaamOwaaqaaiaadweacaWGubGaamis aaaacqGH9aqpdaWcaaqaaiaad6eacaWGvbGaamOwaiaadsfacaWGib aabaGaamyraiaadQfaaaaaaa@4399@

    2. 一般軸対称(2)
      ε x ε θ ε z γ xθ γ θz γ zx = 1 EX NUTHX ETH NUZX EZ 0 0 0 NUXTH EX 1 ETH NUZTH EZ 0 0 0 NUXZ EX NUTHZ ETH 1 EZ 0 0 0 0 0 0 1 GXTH 0 0 0 0 0 0 1 GTHZ 0 0 0 0 0 0 1 GZX σ x σ θ σ z τ xθ τ θz τ zx +(TTREF) AX ATH AZ 0 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaada Gacaqaauaabeqaeeaaaaqaaiabew7aLnaaBaaaleaacaWG4baabeaa aOqaaiabew7aLnaaBaaaleaacqaH4oqCaeqaaaGcbaGaeqyTdu2aaS baaSqaaiaadQhaaeqaaaGceaqabeaacqaHZoWzdaWgaaWcbaGaamiE aiabeI7aXbqabaaakeaacqaHZoWzdaWgaaWcbaGaeqiUdeNaamOEaa qabaaakeaacqaHZoWzdaWgaaWcbaGaamOEaiaadIhaaeqaaaaaaaGc caGL9baaaiaawUhaaiabg2da9maadmaabaqbaeqabyGbaaaaaeaada WcaaqaaiaaigdaaeaacaWGfbGaamiwaaaaaeaacqGHsisldaWcaaqa aiaad6eacaWGvbGaamivaiaadIeacaWGybaabaGaamyraiaadsfaca WGibaaaaqaaiabgkHiTmaalaaabaGaamOtaiaadwfacaWGAbGaamiw aaqaaiaadweacaWGAbaaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabgkHiTmaalaaabaGaamOtaiaadwfacaWGybGaamivaiaadIea aeaacaWGfbGaamiwaaaaaeaadaWcaaqaaiaaigdaaeaacaWGfbGaam ivaiaadIeaaaaabaGaeyOeI0YaaSaaaeaacaWGobGaamyvaiaadQfa caWGubGaamisaaqaaiaadweacaWGAbaaaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabgkHiTmaalaaabaGaamOtaiaadwfacaWGybGa amOwaaqaaiaadweacaWGybaaaaqaaiabgkHiTmaalaaabaGaamOtai aadwfacaWGubGaamisaiaadQfaaeaacaWGfbGaamivaiaadIeaaaaa baWaaSaaaeaacaaIXaaabaGaamyraiaadQfaaaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaWa aSaaaeaacaaIXaaabaGaam4raiaadIfacaWGubGaamisaaaaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaadaWcaaqaaiaaigdaaeaacaWGhbGaamivaiaadIeacaWGAb aaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaamaalaaabaGaaGymaaqaaiaadEeacaWGAbGaam iwaaaaaaaacaGLBbGaayzxaaWaaiqaaeaadaGacaqaauaabeqaeeaa aaqaaiabeo8aZnaaBaaaleaacaWG4baabeaaaOqaaiabeo8aZnaaBa aaleaacqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQhaaeqa aaGceaqabeaacqaHepaDdaWgaaWcbaGaamiEaiabeI7aXbqabaaake aacqaHepaDdaWgaaWcbaGaeqiUdeNaamOEaaqabaaakeaacqaHepaD daWgaaWcbaGaamOEaiaadIhaaeqaaaaaaaGccaGL9baaaiaawUhaai abgUcaRiaacIcacaWGubGaeyOeI0IaamivaiaadkfacaWGfbGaamOr aiaacMcadaGabaqaamaaciaabaqbaeqabqqaaaaabaGaamyqaiaadI faaeaacaWGbbGaamivaiaadIeaaeaacaWGbbGaamOwaaabaeqabaGa aGimaaqaaiaaicdaaeaacaaIWaaaaaaacaGL9baaaiaawUhaaaaa@CA8F@

      ここで、 N U X T H E X = N U T H X E T H , N U X Z E X = N U Z X E Z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGobGaamyvaiaadIfacaWGubGaamisaaqaaiaadweacaWGybaaaiab g2da9maalaaabaGaamOtaiaadwfacaWGubGaamisaiaadIfaaeaaca WGfbGaamivaiaadIeaaaGaaiilamaalaaabaGaamOtaiaadwfacaWG ybGaamOwaaqaaiaadweacaWGybaaaiabg2da9maalaaabaGaamOtai aadwfacaWGAbGaamiwaaqaaiaadweacaWGAbaaaaaa@4F88@ および N U T H Z E T H = N U Z T H E Z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGobGaamyvaiaadsfacaWGibGaamOwaaqaaiaadweacaWGubGaamis aaaacqGH9aqpdaWcaaqaaiaad6eacaWGvbGaamOwaiaadsfacaWGib aabaGaamyraiaadQfaaaaaaa@4396@

    3. 平面ひずみ解析(3)
      { ε x ε z γ z x } = [ 1 E X N U Z X E Z 0 N U X Z E X 1 E Z 0 0 0 1 G Z X ] { σ x σ z τ z x } + ( T T R E F ) { A X A Z 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaafa qabeWabaaabaGaeqyTdu2aaSbaaSqaaiaadIhaaeqaaaGcbaGaeqyT du2aaSbaaSqaaiaadQhaaeqaaaGcbaGaeq4SdC2aaSbaaSqaaiaadQ hacaWG4baabeaaaaaakiaawUhacaGL9baacqGH9aqpdaWadaqaauaa beqadmaaaeaadaWcaaqaaiaaigdaaeaacaWGfbGaamiwaaaaaeaacq GHsisldaWcaaqaaiaad6eacaWGvbGaamOwaiaadIfaaeaacaWGfbGa amOwaaaaaeaacaaIWaaabaGaeyOeI0YaaSaaaeaacaWGobGaamyvai aadIfacaWGAbaabaGaamyraiaadIfaaaaabaWaaSaaaeaacaaIXaaa baGaamyraiaadQfaaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba WaaSaaaeaacaaIXaaabaGaam4raiaadQfacaWGybaaaaaaaiaawUfa caGLDbaadaGadaqaauaabeqadeaaaeaacqaHdpWCdaWgaaWcbaGaam iEaaqabaaakeaacqaHdpWCdaWgaaWcbaGaamOEaaqabaaakeaacqaH epaDdaWgaaWcbaGaamOEaiaadIhaaeqaaaaaaOGaay5Eaiaaw2haai abgUcaRiaacIcacaWGubGaeyOeI0IaamivaiaadkfacaWGfbGaamOr aiaacMcadaGadaqaauaabeqadeaaaeaacaWGbbGaamiwaaqaaiaadg eacaWGAbaabaGaaGimaaaaaiaawUhacaGL9baaaaa@75BE@

      ここで、 N U X Z E X = N U Z X E Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGobGaamyvaiaadIfacaWGAbaabaGaamyraiaadIfaaaGaeyypa0Za aSaaaeaacaWGobGaamyvaiaadQfacaWGybaabaGaamyraiaadQfaaa aaaa@413E@

    ‘TH’( E T H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaads facaWGibaaaa@3866@ N U X T H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaadw facaWGybGaamivaiaadIeaaaa@3A26@ N U T H Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaadw facaWGybGaamivaiaadIeaaaa@3A26@ A T H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaads facaWGibaaaa@3866@ )に関連付けられた材料定数を使用して、平面ひずみ解析で面から外へ向かう方向の応力を計算します。(4)
    σ t h = E T H [ N U X T H E X σ x + N U Z T H E Z σ Z ( T T R E F ) A T H ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadshacaWGObaabeaakiabg2da9iaadweacaWGubGaamis amaadmaabaWaaSaaaeaacaWGobGaamyvaiaadIfacaWGubGaamisaa qaaiaadweacaWGybaaaiabeo8aZnaaBaaaleaacaWG4baabeaakiab gUcaRmaalaaabaGaamOtaiaadwfacaWGAbGaamivaiaadIeaaeaaca WGfbGaamOwaaaacqaHdpWCdaWgaaWcbaGaamOwaaqabaGccqGHsisl caGGOaGaamivaiabgkHiTiaadsfacaWGsbGaamyraiaadAeacaGGPa GaamyqaiaadsfacaWGibaacaGLBbGaayzxaaaaaa@5B7C@
    注: ひずみと応力はどちらも材料座標系で定義されます。
  8. 減衰係数GEを取得するには、臨界減衰率の C / C 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaac+ cacaWGdbWaaSbaaSqaaiaaicdaaeqaaaaa@391F@ に2.0を掛けます。
  9. HyperMeshでは、このカードは材料として表されます。